MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiaglmhm Structured version   Visualization version   GIF version

Theorem pwsdiaglmhm 20964
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwsdiaglmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiaglmhm.b 𝐵 = (Base‘𝑅)
pwsdiaglmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiaglmhm ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiaglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsdiaglmhm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2729 . 2 ( ·𝑠𝑅) = ( ·𝑠𝑅)
3 eqid 2729 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
4 eqid 2729 . 2 (Scalar‘𝑅) = (Scalar‘𝑅)
5 eqid 2729 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
6 eqid 2729 . 2 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 simpl 482 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑅 ∈ LMod)
8 pwsdiaglmhm.y . . 3 𝑌 = (𝑅s 𝐼)
98pwslmod 20876 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
108, 4pwssca 17459 . . 3 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌))
1110eqcomd 2735 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅))
12 lmodgrp 20773 . . 3 (𝑅 ∈ LMod → 𝑅 ∈ Grp)
13 pwsdiaglmhm.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
148, 1, 13pwsdiagghm 19176 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
1512, 14sylan 580 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
16 simplr 768 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝐼𝑊)
171, 4, 2, 6lmodvscl 20784 . . . . . 6 ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
18173expb 1120 . . . . 5 ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
1918adantlr 715 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
2013fvdiagfn 8864 . . . 4 ((𝐼𝑊 ∧ (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2116, 19, 20syl2anc 584 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2213fvdiagfn 8864 . . . . . 6 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2322ad2ant2l 746 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝐼 × {𝑏}))
2423oveq2d 7403 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})))
25 eqid 2729 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
26 simpll 766 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑅 ∈ LMod)
27 simprl 770 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅)))
288, 1, 25pwsdiagel 17460 . . . . . 6 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
2928adantrl 716 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
308, 25, 2, 3, 4, 6, 26, 16, 27, 29pwsvscafval 17457 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})))
31 id 22 . . . . . 6 (𝐼𝑊𝐼𝑊)
32 vex 3451 . . . . . . 7 𝑎 ∈ V
3332a1i 11 . . . . . 6 (𝐼𝑊𝑎 ∈ V)
34 vex 3451 . . . . . . 7 𝑏 ∈ V
3534a1i 11 . . . . . 6 (𝐼𝑊𝑏 ∈ V)
3631, 33, 35ofc12 7683 . . . . 5 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3736ad2antlr 727 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3824, 30, 373eqtrd 2768 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3921, 38eqtr4d 2767 . 2 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑌)(𝐹𝑏)))
401, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39islmhmd 20946 1 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  f cof 7651  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  s cpws 17409  Grpcgrp 18865   GrpHom cghm 19144  LModclmod 20766   LMHom clmhm 20926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-ghm 19145  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-lmhm 20929
This theorem is referenced by:  pwslnmlem1  43081
  Copyright terms: Public domain W3C validator