| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsdiaglmhm | Structured version Visualization version GIF version | ||
| Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsdiaglmhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| pwsdiaglmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm | ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiaglmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑅) = ( ·𝑠 ‘𝑅) | |
| 3 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
| 4 | eqid 2735 | . 2 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 5 | eqid 2735 | . 2 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
| 6 | eqid 2735 | . 2 ⊢ (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅)) | |
| 7 | simpl 482 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ LMod) | |
| 8 | pwsdiaglmhm.y | . . 3 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 9 | 8 | pwslmod 20927 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
| 10 | 8, 4 | pwssca 17510 | . . 3 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌)) |
| 11 | 10 | eqcomd 2741 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅)) |
| 12 | lmodgrp 20824 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ Grp) | |
| 13 | pwsdiaglmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
| 14 | 8, 1, 13 | pwsdiagghm 19227 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 15 | 12, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 16 | simplr 768 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑊) | |
| 17 | 1, 4, 2, 6 | lmodvscl 20835 | . . . . . 6 ⊢ ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 18 | 17 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 19 | 18 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 20 | 13 | fvdiagfn 8905 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 21 | 16, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 22 | 13 | fvdiagfn 8905 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 23 | 22 | ad2ant2l 746 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 24 | 23 | oveq2d 7421 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏}))) |
| 25 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 26 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ LMod) | |
| 27 | simprl 770 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅))) | |
| 28 | 8, 1, 25 | pwsdiagel 17511 | . . . . . 6 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ 𝑏 ∈ 𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 29 | 28 | adantrl 716 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 30 | 8, 25, 2, 3, 4, 6, 26, 16, 27, 29 | pwsvscafval 17508 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏}))) |
| 31 | id 22 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ 𝑊) | |
| 32 | vex 3463 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑎 ∈ V) |
| 34 | vex 3463 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑏 ∈ V) |
| 36 | 31, 33, 35 | ofc12 7701 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 37 | 36 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 38 | 24, 30, 37 | 3eqtrd 2774 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 39 | 21, 38 | eqtr4d 2773 | . 2 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏))) |
| 40 | 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39 | islmhmd 20997 | 1 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ↦ cmpt 5201 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 ↑s cpws 17460 Grpcgrp 18916 GrpHom cghm 19195 LModclmod 20817 LMHom clmhm 20977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-minusg 18920 df-ghm 19196 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lmhm 20980 |
| This theorem is referenced by: pwslnmlem1 43116 |
| Copyright terms: Public domain | W3C validator |