| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsdiaglmhm | Structured version Visualization version GIF version | ||
| Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsdiaglmhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| pwsdiaglmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm | ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiaglmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . 2 ⊢ ( ·𝑠 ‘𝑅) = ( ·𝑠 ‘𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
| 4 | eqid 2729 | . 2 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 5 | eqid 2729 | . 2 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
| 6 | eqid 2729 | . 2 ⊢ (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅)) | |
| 7 | simpl 482 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ LMod) | |
| 8 | pwsdiaglmhm.y | . . 3 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 9 | 8 | pwslmod 20852 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
| 10 | 8, 4 | pwssca 17435 | . . 3 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌)) |
| 11 | 10 | eqcomd 2735 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅)) |
| 12 | lmodgrp 20749 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ Grp) | |
| 13 | pwsdiaglmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
| 14 | 8, 1, 13 | pwsdiagghm 19152 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 15 | 12, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 16 | simplr 768 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑊) | |
| 17 | 1, 4, 2, 6 | lmodvscl 20760 | . . . . . 6 ⊢ ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 18 | 17 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 19 | 18 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 20 | 13 | fvdiagfn 8841 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 21 | 16, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 22 | 13 | fvdiagfn 8841 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 23 | 22 | ad2ant2l 746 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 24 | 23 | oveq2d 7385 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏}))) |
| 25 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 26 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ LMod) | |
| 27 | simprl 770 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅))) | |
| 28 | 8, 1, 25 | pwsdiagel 17436 | . . . . . 6 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ 𝑏 ∈ 𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 29 | 28 | adantrl 716 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 30 | 8, 25, 2, 3, 4, 6, 26, 16, 27, 29 | pwsvscafval 17433 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏}))) |
| 31 | id 22 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ 𝑊) | |
| 32 | vex 3448 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑎 ∈ V) |
| 34 | vex 3448 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑏 ∈ V) |
| 36 | 31, 33, 35 | ofc12 7663 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 37 | 36 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 38 | 24, 30, 37 | 3eqtrd 2768 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 39 | 21, 38 | eqtr4d 2767 | . 2 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏))) |
| 40 | 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39 | islmhmd 20922 | 1 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 ↑s cpws 17385 Grpcgrp 18841 GrpHom cghm 19120 LModclmod 20742 LMHom clmhm 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-grp 18844 df-minusg 18845 df-ghm 19121 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20744 df-lmhm 20905 |
| This theorem is referenced by: pwslnmlem1 43054 |
| Copyright terms: Public domain | W3C validator |