MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiaglmhm Structured version   Visualization version   GIF version

Theorem pwsdiaglmhm 19822
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwsdiaglmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiaglmhm.b 𝐵 = (Base‘𝑅)
pwsdiaglmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiaglmhm ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiaglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsdiaglmhm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2798 . 2 ( ·𝑠𝑅) = ( ·𝑠𝑅)
3 eqid 2798 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
4 eqid 2798 . 2 (Scalar‘𝑅) = (Scalar‘𝑅)
5 eqid 2798 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
6 eqid 2798 . 2 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 simpl 486 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑅 ∈ LMod)
8 pwsdiaglmhm.y . . 3 𝑌 = (𝑅s 𝐼)
98pwslmod 19735 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
108, 4pwssca 16761 . . 3 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌))
1110eqcomd 2804 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅))
12 lmodgrp 19634 . . 3 (𝑅 ∈ LMod → 𝑅 ∈ Grp)
13 pwsdiaglmhm.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
148, 1, 13pwsdiagghm 18378 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
1512, 14sylan 583 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
16 simplr 768 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝐼𝑊)
171, 4, 2, 6lmodvscl 19644 . . . . . 6 ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
18173expb 1117 . . . . 5 ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
1918adantlr 714 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
2013fvdiagfn 8438 . . . 4 ((𝐼𝑊 ∧ (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2116, 19, 20syl2anc 587 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2213fvdiagfn 8438 . . . . . 6 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2322ad2ant2l 745 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝐼 × {𝑏}))
2423oveq2d 7151 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})))
25 eqid 2798 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
26 simpll 766 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑅 ∈ LMod)
27 simprl 770 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅)))
288, 1, 25pwsdiagel 16762 . . . . . 6 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
2928adantrl 715 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
308, 25, 2, 3, 4, 6, 26, 16, 27, 29pwsvscafval 16759 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})))
31 id 22 . . . . . 6 (𝐼𝑊𝐼𝑊)
32 vex 3444 . . . . . . 7 𝑎 ∈ V
3332a1i 11 . . . . . 6 (𝐼𝑊𝑎 ∈ V)
34 vex 3444 . . . . . . 7 𝑏 ∈ V
3534a1i 11 . . . . . 6 (𝐼𝑊𝑏 ∈ V)
3631, 33, 35ofc12 7414 . . . . 5 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3736ad2antlr 726 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3824, 30, 373eqtrd 2837 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3921, 38eqtr4d 2836 . 2 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑌)(𝐹𝑏)))
401, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39islmhmd 19804 1 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  s cpws 16712  Grpcgrp 18095   GrpHom cghm 18347  LModclmod 19627   LMHom clmhm 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lmhm 19787
This theorem is referenced by:  pwslnmlem1  40036
  Copyright terms: Public domain W3C validator