MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsdiaglmhm Structured version   Visualization version   GIF version

Theorem pwsdiaglmhm 20961
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwsdiaglmhm.y 𝑌 = (𝑅s 𝐼)
pwsdiaglmhm.b 𝐵 = (Base‘𝑅)
pwsdiaglmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
pwsdiaglmhm ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Distinct variable groups:   𝑥,𝑌   𝑥,𝑅   𝑥,𝐼   𝑥,𝐵   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem pwsdiaglmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsdiaglmhm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2729 . 2 ( ·𝑠𝑅) = ( ·𝑠𝑅)
3 eqid 2729 . 2 ( ·𝑠𝑌) = ( ·𝑠𝑌)
4 eqid 2729 . 2 (Scalar‘𝑅) = (Scalar‘𝑅)
5 eqid 2729 . 2 (Scalar‘𝑌) = (Scalar‘𝑌)
6 eqid 2729 . 2 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
7 simpl 482 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑅 ∈ LMod)
8 pwsdiaglmhm.y . . 3 𝑌 = (𝑅s 𝐼)
98pwslmod 20873 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝑌 ∈ LMod)
108, 4pwssca 17400 . . 3 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌))
1110eqcomd 2735 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅))
12 lmodgrp 20770 . . 3 (𝑅 ∈ LMod → 𝑅 ∈ Grp)
13 pwsdiaglmhm.f . . . 4 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
148, 1, 13pwsdiagghm 19123 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
1512, 14sylan 580 . 2 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌))
16 simplr 768 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝐼𝑊)
171, 4, 2, 6lmodvscl 20781 . . . . . 6 ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
18173expb 1120 . . . . 5 ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
1918adantlr 715 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵)
2013fvdiagfn 8818 . . . 4 ((𝐼𝑊 ∧ (𝑎( ·𝑠𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2116, 19, 20syl2anc 584 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
2213fvdiagfn 8818 . . . . . 6 ((𝐼𝑊𝑏𝐵) → (𝐹𝑏) = (𝐼 × {𝑏}))
2322ad2ant2l 746 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹𝑏) = (𝐼 × {𝑏}))
2423oveq2d 7365 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})))
25 eqid 2729 . . . . 5 (Base‘𝑌) = (Base‘𝑌)
26 simpll 766 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑅 ∈ LMod)
27 simprl 770 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅)))
288, 1, 25pwsdiagel 17401 . . . . . 6 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ 𝑏𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
2928adantrl 716 . . . . 5 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌))
308, 25, 2, 3, 4, 6, 26, 16, 27, 29pwsvscafval 17398 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})))
31 id 22 . . . . . 6 (𝐼𝑊𝐼𝑊)
32 vex 3440 . . . . . . 7 𝑎 ∈ V
3332a1i 11 . . . . . 6 (𝐼𝑊𝑎 ∈ V)
34 vex 3440 . . . . . . 7 𝑏 ∈ V
3534a1i 11 . . . . . 6 (𝐼𝑊𝑏 ∈ V)
3631, 33, 35ofc12 7643 . . . . 5 (𝐼𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3736ad2antlr 727 . . . 4 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3824, 30, 373eqtrd 2768 . . 3 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝑎( ·𝑠𝑌)(𝐹𝑏)) = (𝐼 × {(𝑎( ·𝑠𝑅)𝑏)}))
3921, 38eqtr4d 2767 . 2 (((𝑅 ∈ LMod ∧ 𝐼𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏𝐵)) → (𝐹‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑌)(𝐹𝑏)))
401, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39islmhmd 20943 1 ((𝑅 ∈ LMod ∧ 𝐼𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cmpt 5173   × cxp 5617  cfv 6482  (class class class)co 7349  f cof 7611  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  s cpws 17350  Grpcgrp 18812   GrpHom cghm 19091  LModclmod 20763   LMHom clmhm 20923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-minusg 18816  df-ghm 19092  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lmhm 20926
This theorem is referenced by:  pwslnmlem1  43069
  Copyright terms: Public domain W3C validator