![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsdiaglmhm | Structured version Visualization version GIF version |
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
pwsdiaglmhm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsdiaglmhm.b | ⊢ 𝐵 = (Base‘𝑅) |
pwsdiaglmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
pwsdiaglmhm | ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsdiaglmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑅) = ( ·𝑠 ‘𝑅) | |
3 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
4 | eqid 2735 | . 2 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
5 | eqid 2735 | . 2 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
6 | eqid 2735 | . 2 ⊢ (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅)) | |
7 | simpl 482 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ LMod) | |
8 | pwsdiaglmhm.y | . . 3 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
9 | 8 | pwslmod 20986 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
10 | 8, 4 | pwssca 17543 | . . 3 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌)) |
11 | 10 | eqcomd 2741 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅)) |
12 | lmodgrp 20882 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ Grp) | |
13 | pwsdiaglmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
14 | 8, 1, 13 | pwsdiagghm 19275 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
15 | 12, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
16 | simplr 769 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑊) | |
17 | 1, 4, 2, 6 | lmodvscl 20893 | . . . . . 6 ⊢ ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
18 | 17 | 3expb 1119 | . . . . 5 ⊢ ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
19 | 18 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
20 | 13 | fvdiagfn 8930 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
21 | 16, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
22 | 13 | fvdiagfn 8930 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
23 | 22 | ad2ant2l 746 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
24 | 23 | oveq2d 7447 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏}))) |
25 | eqid 2735 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
26 | simpll 767 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ LMod) | |
27 | simprl 771 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅))) | |
28 | 8, 1, 25 | pwsdiagel 17544 | . . . . . 6 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ 𝑏 ∈ 𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
29 | 28 | adantrl 716 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
30 | 8, 25, 2, 3, 4, 6, 26, 16, 27, 29 | pwsvscafval 17541 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏}))) |
31 | id 22 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ 𝑊) | |
32 | vex 3482 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑎 ∈ V) |
34 | vex 3482 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑏 ∈ V) |
36 | 31, 33, 35 | ofc12 7727 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
37 | 36 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
38 | 24, 30, 37 | 3eqtrd 2779 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
39 | 21, 38 | eqtr4d 2778 | . 2 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏))) |
40 | 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39 | islmhmd 21056 | 1 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {csn 4631 ↦ cmpt 5231 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 ↑s cpws 17493 Grpcgrp 18964 GrpHom cghm 19243 LModclmod 20875 LMHom clmhm 21036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-grp 18967 df-minusg 18968 df-ghm 19244 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lmhm 21039 |
This theorem is referenced by: pwslnmlem1 43081 |
Copyright terms: Public domain | W3C validator |