| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsdiaglmhm | Structured version Visualization version GIF version | ||
| Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsdiaglmhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| pwsdiaglmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm | ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiaglmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑅) = ( ·𝑠 ‘𝑅) | |
| 3 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
| 4 | eqid 2731 | . 2 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 5 | eqid 2731 | . 2 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
| 6 | eqid 2731 | . 2 ⊢ (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅)) | |
| 7 | simpl 482 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ LMod) | |
| 8 | pwsdiaglmhm.y | . . 3 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 9 | 8 | pwslmod 20903 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
| 10 | 8, 4 | pwssca 17400 | . . 3 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌)) |
| 11 | 10 | eqcomd 2737 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅)) |
| 12 | lmodgrp 20800 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ Grp) | |
| 13 | pwsdiaglmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
| 14 | 8, 1, 13 | pwsdiagghm 19156 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 15 | 12, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 16 | simplr 768 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑊) | |
| 17 | 1, 4, 2, 6 | lmodvscl 20811 | . . . . . 6 ⊢ ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 18 | 17 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 19 | 18 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 20 | 13 | fvdiagfn 8815 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 21 | 16, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 22 | 13 | fvdiagfn 8815 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 23 | 22 | ad2ant2l 746 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 24 | 23 | oveq2d 7362 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏}))) |
| 25 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 26 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ LMod) | |
| 27 | simprl 770 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅))) | |
| 28 | 8, 1, 25 | pwsdiagel 17401 | . . . . . 6 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ 𝑏 ∈ 𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 29 | 28 | adantrl 716 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 30 | 8, 25, 2, 3, 4, 6, 26, 16, 27, 29 | pwsvscafval 17398 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏}))) |
| 31 | id 22 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ 𝑊) | |
| 32 | vex 3440 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑎 ∈ V) |
| 34 | vex 3440 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑏 ∈ V) |
| 36 | 31, 33, 35 | ofc12 7640 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 37 | 36 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 38 | 24, 30, 37 | 3eqtrd 2770 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 39 | 21, 38 | eqtr4d 2769 | . 2 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏))) |
| 40 | 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39 | islmhmd 20973 | 1 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 ↑s cpws 17350 Grpcgrp 18846 GrpHom cghm 19124 LModclmod 20793 LMHom clmhm 20953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-ghm 19125 df-mgp 20059 df-ur 20100 df-ring 20153 df-lmod 20795 df-lmhm 20956 |
| This theorem is referenced by: pwslnmlem1 43195 |
| Copyright terms: Public domain | W3C validator |