| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsdiaglmhm | Structured version Visualization version GIF version | ||
| Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsdiaglmhm.b | ⊢ 𝐵 = (Base‘𝑅) |
| pwsdiaglmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
| Ref | Expression |
|---|---|
| pwsdiaglmhm | ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiaglmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . 2 ⊢ ( ·𝑠 ‘𝑅) = ( ·𝑠 ‘𝑅) | |
| 3 | eqid 2729 | . 2 ⊢ ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘𝑌) | |
| 4 | eqid 2729 | . 2 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 5 | eqid 2729 | . 2 ⊢ (Scalar‘𝑌) = (Scalar‘𝑌) | |
| 6 | eqid 2729 | . 2 ⊢ (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅)) | |
| 7 | simpl 482 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ LMod) | |
| 8 | pwsdiaglmhm.y | . . 3 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 9 | 8 | pwslmod 20876 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝑌 ∈ LMod) |
| 10 | 8, 4 | pwssca 17459 | . . 3 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) = (Scalar‘𝑌)) |
| 11 | 10 | eqcomd 2735 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑌) = (Scalar‘𝑅)) |
| 12 | lmodgrp 20773 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ Grp) | |
| 13 | pwsdiaglmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
| 14 | 8, 1, 13 | pwsdiagghm 19176 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 15 | 12, 14 | sylan 580 | . 2 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) |
| 16 | simplr 768 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝐼 ∈ 𝑊) | |
| 17 | 1, 4, 2, 6 | lmodvscl 20784 | . . . . . 6 ⊢ ((𝑅 ∈ LMod ∧ 𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 18 | 17 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 19 | 18 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) |
| 20 | 13 | fvdiagfn 8864 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (𝑎( ·𝑠 ‘𝑅)𝑏) ∈ 𝐵) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 21 | 16, 19, 20 | syl2anc 584 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 22 | 13 | fvdiagfn 8864 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 23 | 22 | ad2ant2l 746 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘𝑏) = (𝐼 × {𝑏})) |
| 24 | 23 | oveq2d 7403 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏}))) |
| 25 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 26 | simpll 766 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑅 ∈ LMod) | |
| 27 | simprl 770 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ (Base‘(Scalar‘𝑅))) | |
| 28 | 8, 1, 25 | pwsdiagel 17460 | . . . . . 6 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ 𝑏 ∈ 𝐵) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 29 | 28 | adantrl 716 | . . . . 5 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐼 × {𝑏}) ∈ (Base‘𝑌)) |
| 30 | 8, 25, 2, 3, 4, 6, 26, 16, 27, 29 | pwsvscafval 17457 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐼 × {𝑏})) = ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏}))) |
| 31 | id 22 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ 𝑊) | |
| 32 | vex 3451 | . . . . . . 7 ⊢ 𝑎 ∈ V | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑎 ∈ V) |
| 34 | vex 3451 | . . . . . . 7 ⊢ 𝑏 ∈ V | |
| 35 | 34 | a1i 11 | . . . . . 6 ⊢ (𝐼 ∈ 𝑊 → 𝑏 ∈ V) |
| 36 | 31, 33, 35 | ofc12 7683 | . . . . 5 ⊢ (𝐼 ∈ 𝑊 → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 37 | 36 | ad2antlr 727 | . . . 4 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → ((𝐼 × {𝑎}) ∘f ( ·𝑠 ‘𝑅)(𝐼 × {𝑏})) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 38 | 24, 30, 37 | 3eqtrd 2768 | . . 3 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏)) = (𝐼 × {(𝑎( ·𝑠 ‘𝑅)𝑏)})) |
| 39 | 21, 38 | eqtr4d 2767 | . 2 ⊢ (((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑅)) ∧ 𝑏 ∈ 𝐵)) → (𝐹‘(𝑎( ·𝑠 ‘𝑅)𝑏)) = (𝑎( ·𝑠 ‘𝑌)(𝐹‘𝑏))) |
| 40 | 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, 39 | islmhmd 20946 | 1 ⊢ ((𝑅 ∈ LMod ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 LMHom 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 ↑s cpws 17409 Grpcgrp 18865 GrpHom cghm 19144 LModclmod 20766 LMHom clmhm 20926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-pws 17412 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-minusg 18869 df-ghm 19145 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 df-lmhm 20929 |
| This theorem is referenced by: pwslnmlem1 43081 |
| Copyright terms: Public domain | W3C validator |