MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdiagfn Structured version   Visualization version   GIF version

Theorem fdiagfn 8678
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fdiagfn ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fdiagfn
StepHypRef Expression
1 fconst6g 6663 . . . 4 (𝑥𝐵 → (𝐼 × {𝑥}):𝐼𝐵)
21adantl 482 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}):𝐼𝐵)
3 elmapg 8628 . . . 4 ((𝐵𝑉𝐼𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵m 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
43adantr 481 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵m 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
52, 4mpbird 256 . 2 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}) ∈ (𝐵m 𝐼))
6 fdiagfn.f . 2 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
75, 6fmptd 6988 1 ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {csn 4561  cmpt 5157   × cxp 5587  wf 6429  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617
This theorem is referenced by:  pwsdiagmhm  18469
  Copyright terms: Public domain W3C validator