MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdiagfn Structured version   Visualization version   GIF version

Theorem fdiagfn 8938
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fdiagfn ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fdiagfn
StepHypRef Expression
1 fconst6g 6805 . . . 4 (𝑥𝐵 → (𝐼 × {𝑥}):𝐼𝐵)
21adantl 481 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}):𝐼𝐵)
3 elmapg 8887 . . . 4 ((𝐵𝑉𝐼𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵m 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
43adantr 480 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵m 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
52, 4mpbird 257 . 2 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}) ∈ (𝐵m 𝐼))
6 fdiagfn.f . 2 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
75, 6fmptd 7141 1 ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  {csn 4634  cmpt 5234   × cxp 5691  wf 6565  (class class class)co 7438  m cmap 8874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-map 8876
This theorem is referenced by:  pwsdiagmhm  18866
  Copyright terms: Public domain W3C validator