![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdiagfn | Structured version Visualization version GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fdiagfn | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6344 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐼 × {𝑥}):𝐼⟶𝐵) | |
2 | 1 | adantl 475 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}):𝐼⟶𝐵) |
3 | elmapg 8153 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) | |
4 | 3 | adantr 474 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) |
5 | 2, 4 | mpbird 249 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐼)) |
6 | fdiagfn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
7 | 5, 6 | fmptd 6648 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑𝑚 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 {csn 4398 ↦ cmpt 4965 × cxp 5353 ⟶wf 6131 (class class class)co 6922 ↑𝑚 cmap 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-map 8142 |
This theorem is referenced by: pwsdiagmhm 17755 |
Copyright terms: Public domain | W3C validator |