![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdiagfn | Structured version Visualization version GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fdiagfn | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6781 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐼 × {𝑥}):𝐼⟶𝐵) | |
2 | 1 | adantl 481 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}):𝐼⟶𝐵) |
3 | elmapg 8852 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑m 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) | |
4 | 3 | adantr 480 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑m 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) |
5 | 2, 4 | mpbird 257 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}) ∈ (𝐵 ↑m 𝐼)) |
6 | fdiagfn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
7 | 5, 6 | fmptd 7119 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {csn 4625 ↦ cmpt 5226 × cxp 5671 ⟶wf 6539 (class class class)co 7415 ↑m cmap 8839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-map 8841 |
This theorem is referenced by: pwsdiagmhm 18777 |
Copyright terms: Public domain | W3C validator |