MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdiagfn Structured version   Visualization version   GIF version

Theorem fdiagfn 8831
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
Assertion
Ref Expression
fdiagfn ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐼   𝑥,𝑉   𝑥,𝑊
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem fdiagfn
StepHypRef Expression
1 fconst6g 6732 . . . 4 (𝑥𝐵 → (𝐼 × {𝑥}):𝐼𝐵)
21adantl 483 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}):𝐼𝐵)
3 elmapg 8781 . . . 4 ((𝐵𝑉𝐼𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵m 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
43adantr 482 . . 3 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵m 𝐼) ↔ (𝐼 × {𝑥}):𝐼𝐵))
52, 4mpbird 257 . 2 (((𝐵𝑉𝐼𝑊) ∧ 𝑥𝐵) → (𝐼 × {𝑥}) ∈ (𝐵m 𝐼))
6 fdiagfn.f . 2 𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))
75, 6fmptd 7063 1 ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {csn 4587  cmpt 5189   × cxp 5632  wf 6493  (class class class)co 7358  m cmap 8768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-map 8770
This theorem is referenced by:  pwsdiagmhm  18646
  Copyright terms: Public domain W3C validator