![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fdiagfn | Structured version Visualization version GIF version |
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
fdiagfn.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) |
Ref | Expression |
---|---|
fdiagfn | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6732 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐼 × {𝑥}):𝐼⟶𝐵) | |
2 | 1 | adantl 483 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}):𝐼⟶𝐵) |
3 | elmapg 8781 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑m 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) | |
4 | 3 | adantr 482 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → ((𝐼 × {𝑥}) ∈ (𝐵 ↑m 𝐼) ↔ (𝐼 × {𝑥}):𝐼⟶𝐵)) |
5 | 2, 4 | mpbird 257 | . 2 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) ∧ 𝑥 ∈ 𝐵) → (𝐼 × {𝑥}) ∈ (𝐵 ↑m 𝐼)) |
6 | fdiagfn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) | |
7 | 5, 6 | fmptd 7063 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐹:𝐵⟶(𝐵 ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4587 ↦ cmpt 5189 × cxp 5632 ⟶wf 6493 (class class class)co 7358 ↑m cmap 8768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-map 8770 |
This theorem is referenced by: pwsdiagmhm 18646 |
Copyright terms: Public domain | W3C validator |