Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonarlem Structured version   Visualization version   GIF version

Theorem gonarlem 35367
Description: Lemma for gonar 35368 (induction step). (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonarlem (𝑁 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem gonarlem
Dummy variables 𝑖 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7823 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
2 ovexd 7384 . . . . 5 (𝑁 ∈ ω → (𝑎𝑔𝑏) ∈ V)
3 isfmlasuc 35361 . . . . 5 ((suc 𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ V) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
41, 2, 3syl2anc 584 . . . 4 (𝑁 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
54adantr 480 . . 3 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
6 fmlasssuc 35362 . . . . . . . . . . 11 (suc 𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
71, 6syl 17 . . . . . . . . . 10 (𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
87sseld 3934 . . . . . . . . 9 (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
97sseld 3934 . . . . . . . . 9 (𝑁 ∈ ω → (𝑏 ∈ (Fmla‘suc 𝑁) → 𝑏 ∈ (Fmla‘suc suc 𝑁)))
108, 9anim12d 609 . . . . . . . 8 (𝑁 ∈ ω → ((𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
1110com12 32 . . . . . . 7 ((𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
1211imim2i 16 . . . . . 6 (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
1312com23 86 . . . . 5 (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → (𝑁 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
1413impcom 407 . . . 4 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
15 gonafv 35323 . . . . . . . . . . . . . 14 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
1615el2v 3443 . . . . . . . . . . . . 13 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
1716a1i 11 . . . . . . . . . . . 12 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
18 gonafv 35323 . . . . . . . . . . . 12 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
1917, 18eqeq12d 2745 . . . . . . . . . . 11 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
20 1oex 8398 . . . . . . . . . . . 12 1o ∈ V
21 opex 5407 . . . . . . . . . . . 12 𝑎, 𝑏⟩ ∈ V
2220, 21opth 5419 . . . . . . . . . . 11 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩))
2319, 22bitrdi 287 . . . . . . . . . 10 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩)))
2423adantll 714 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩)))
25 vex 3440 . . . . . . . . . . . . . 14 𝑎 ∈ V
26 vex 3440 . . . . . . . . . . . . . 14 𝑏 ∈ V
2725, 26opth 5419 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑎 = 𝑢𝑏 = 𝑣))
28 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
2928equcoms 2020 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
30 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑏 → (𝑣 ∈ (Fmla‘suc 𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑁)))
3130equcoms 2020 . . . . . . . . . . . . . . 15 (𝑏 = 𝑣 → (𝑣 ∈ (Fmla‘suc 𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑁)))
3229, 31bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))))
3332, 11biimtrdi 253 . . . . . . . . . . . . 13 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3427, 33sylbi 217 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3534adantl 481 . . . . . . . . . . 11 ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3635com13 88 . . . . . . . . . 10 (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3736impl 455 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
3824, 37sylbid 240 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
3938rexlimdva 3130 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
40 gonanegoal 35325 . . . . . . . . . 10 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
41 eqneqall 2936 . . . . . . . . . 10 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4240, 41mpi 20 . . . . . . . . 9 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))
4342a1i 11 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑖 ∈ ω) → ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4443rexlimdva 3130 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4539, 44jaod 859 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4645rexlimdva 3130 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4746adantr 480 . . . 4 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4814, 47jaod 859 . . 3 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
495, 48sylbid 240 . 2 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
5049ex 412 1 (𝑁 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  Vcvv 3436  wss 3903  cop 4583  suc csuc 6309  cfv 6482  (class class class)co 7349  ωcom 7799  1oc1o 8381  𝑔cgna 35307  𝑔cgol 35308  Fmlacfmla 35310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-map 8755  df-goel 35313  df-gona 35314  df-goal 35315  df-sat 35316  df-fmla 35318
This theorem is referenced by:  gonar  35368
  Copyright terms: Public domain W3C validator