Step | Hyp | Ref
| Expression |
1 | | peano2 7877 |
. . . . 5
β’ (π β Ο β suc π β
Ο) |
2 | | ovexd 7440 |
. . . . 5
β’ (π β Ο β (πβΌππ) β V) |
3 | | isfmlasuc 34367 |
. . . . 5
β’ ((suc
π β Ο β§
(πβΌππ) β V) β ((πβΌππ) β (Fmlaβsuc suc π) β ((πβΌππ) β (Fmlaβsuc π) β¨ βπ’ β (Fmlaβsuc π)(βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β¨ βπ β Ο (πβΌππ) = βπππ’)))) |
4 | 1, 2, 3 | syl2anc 584 |
. . . 4
β’ (π β Ο β ((πβΌππ) β (Fmlaβsuc suc
π) β ((πβΌππ) β (Fmlaβsuc π) β¨ βπ’ β (Fmlaβsuc π)(βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β¨ βπ β Ο (πβΌππ) = βπππ’)))) |
5 | 4 | adantr 481 |
. . 3
β’ ((π β Ο β§ ((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)))) β ((πβΌππ) β (Fmlaβsuc suc π) β ((πβΌππ) β (Fmlaβsuc π) β¨ βπ’ β (Fmlaβsuc π)(βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β¨ βπ β Ο (πβΌππ) = βπππ’)))) |
6 | | fmlasssuc 34368 |
. . . . . . . . . . 11
β’ (suc
π β Ο β
(Fmlaβsuc π) β
(Fmlaβsuc suc π)) |
7 | 1, 6 | syl 17 |
. . . . . . . . . 10
β’ (π β Ο β
(Fmlaβsuc π) β
(Fmlaβsuc suc π)) |
8 | 7 | sseld 3980 |
. . . . . . . . 9
β’ (π β Ο β (π β (Fmlaβsuc π) β π β (Fmlaβsuc suc π))) |
9 | 7 | sseld 3980 |
. . . . . . . . 9
β’ (π β Ο β (π β (Fmlaβsuc π) β π β (Fmlaβsuc suc π))) |
10 | 8, 9 | anim12d 609 |
. . . . . . . 8
β’ (π β Ο β ((π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
11 | 10 | com12 32 |
. . . . . . 7
β’ ((π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)) β (π β Ο β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
12 | 11 | imim2i 16 |
. . . . . 6
β’ (((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π))) β ((πβΌππ) β (Fmlaβsuc π) β (π β Ο β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))))) |
13 | 12 | com23 86 |
. . . . 5
β’ (((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π))) β (π β Ο β ((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))))) |
14 | 13 | impcom 408 |
. . . 4
β’ ((π β Ο β§ ((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)))) β ((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
15 | | gonafv 34329 |
. . . . . . . . . . . . . 14
β’ ((π β V β§ π β V) β (πβΌππ) = β¨1o,
β¨π, πβ©β©) |
16 | 15 | el2v 3482 |
. . . . . . . . . . . . 13
β’ (πβΌππ) = β¨1o,
β¨π, πβ©β© |
17 | 16 | a1i 11 |
. . . . . . . . . . . 12
β’ ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β (πβΌππ) = β¨1o, β¨π, πβ©β©) |
18 | | gonafv 34329 |
. . . . . . . . . . . 12
β’ ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β (π’βΌππ£) = β¨1o, β¨π’, π£β©β©) |
19 | 17, 18 | eqeq12d 2748 |
. . . . . . . . . . 11
β’ ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β ((πβΌππ) = (π’βΌππ£) β β¨1o, β¨π, πβ©β© = β¨1o,
β¨π’, π£β©β©)) |
20 | | 1oex 8472 |
. . . . . . . . . . . 12
β’
1o β V |
21 | | opex 5463 |
. . . . . . . . . . . 12
β’
β¨π, πβ© β V |
22 | 20, 21 | opth 5475 |
. . . . . . . . . . 11
β’
(β¨1o, β¨π, πβ©β© = β¨1o,
β¨π’, π£β©β© β (1o =
1o β§ β¨π, πβ© = β¨π’, π£β©)) |
23 | 19, 22 | bitrdi 286 |
. . . . . . . . . 10
β’ ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β ((πβΌππ) = (π’βΌππ£) β (1o = 1o β§
β¨π, πβ© = β¨π’, π£β©))) |
24 | 23 | adantll 712 |
. . . . . . . . 9
β’ (((π β Ο β§ π’ β (Fmlaβsuc π)) β§ π£ β (Fmlaβsuc π)) β ((πβΌππ) = (π’βΌππ£) β (1o = 1o β§
β¨π, πβ© = β¨π’, π£β©))) |
25 | | vex 3478 |
. . . . . . . . . . . . . 14
β’ π β V |
26 | | vex 3478 |
. . . . . . . . . . . . . 14
β’ π β V |
27 | 25, 26 | opth 5475 |
. . . . . . . . . . . . 13
β’
(β¨π, πβ© = β¨π’, π£β© β (π = π’ β§ π = π£)) |
28 | | eleq1w 2816 |
. . . . . . . . . . . . . . . 16
β’ (π’ = π β (π’ β (Fmlaβsuc π) β π β (Fmlaβsuc π))) |
29 | 28 | equcoms 2023 |
. . . . . . . . . . . . . . 15
β’ (π = π’ β (π’ β (Fmlaβsuc π) β π β (Fmlaβsuc π))) |
30 | | eleq1w 2816 |
. . . . . . . . . . . . . . . 16
β’ (π£ = π β (π£ β (Fmlaβsuc π) β π β (Fmlaβsuc π))) |
31 | 30 | equcoms 2023 |
. . . . . . . . . . . . . . 15
β’ (π = π£ β (π£ β (Fmlaβsuc π) β π β (Fmlaβsuc π))) |
32 | 29, 31 | bi2anan9 637 |
. . . . . . . . . . . . . 14
β’ ((π = π’ β§ π = π£) β ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)))) |
33 | 32, 11 | syl6bi 252 |
. . . . . . . . . . . . 13
β’ ((π = π’ β§ π = π£) β ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β (π β Ο β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))))) |
34 | 27, 33 | sylbi 216 |
. . . . . . . . . . . 12
β’
(β¨π, πβ© = β¨π’, π£β© β ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β (π β Ο β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))))) |
35 | 34 | adantl 482 |
. . . . . . . . . . 11
β’
((1o = 1o β§ β¨π, πβ© = β¨π’, π£β©) β ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β (π β Ο β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))))) |
36 | 35 | com13 88 |
. . . . . . . . . 10
β’ (π β Ο β ((π’ β (Fmlaβsuc π) β§ π£ β (Fmlaβsuc π)) β ((1o = 1o
β§ β¨π, πβ© = β¨π’, π£β©) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))))) |
37 | 36 | impl 456 |
. . . . . . . . 9
β’ (((π β Ο β§ π’ β (Fmlaβsuc π)) β§ π£ β (Fmlaβsuc π)) β ((1o = 1o
β§ β¨π, πβ© = β¨π’, π£β©) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
38 | 24, 37 | sylbid 239 |
. . . . . . . 8
β’ (((π β Ο β§ π’ β (Fmlaβsuc π)) β§ π£ β (Fmlaβsuc π)) β ((πβΌππ) = (π’βΌππ£) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
39 | 38 | rexlimdva 3155 |
. . . . . . 7
β’ ((π β Ο β§ π’ β (Fmlaβsuc π)) β (βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
40 | | gonanegoal 34331 |
. . . . . . . . . 10
β’ (πβΌππ) β
βπππ’ |
41 | | eqneqall 2951 |
. . . . . . . . . 10
β’ ((πβΌππ) =
βπππ’ β ((πβΌππ) β βπππ’ β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
42 | 40, 41 | mpi 20 |
. . . . . . . . 9
β’ ((πβΌππ) =
βπππ’ β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))) |
43 | 42 | a1i 11 |
. . . . . . . 8
β’ (((π β Ο β§ π’ β (Fmlaβsuc π)) β§ π β Ο) β ((πβΌππ) = βπππ’ β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
44 | 43 | rexlimdva 3155 |
. . . . . . 7
β’ ((π β Ο β§ π’ β (Fmlaβsuc π)) β (βπ β Ο (πβΌππ) =
βπππ’ β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
45 | 39, 44 | jaod 857 |
. . . . . 6
β’ ((π β Ο β§ π’ β (Fmlaβsuc π)) β ((βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β¨ βπ β Ο (πβΌππ) = βπππ’) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
46 | 45 | rexlimdva 3155 |
. . . . 5
β’ (π β Ο β
(βπ’ β
(Fmlaβsuc π)(βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β¨ βπ β Ο (πβΌππ) = βπππ’) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
47 | 46 | adantr 481 |
. . . 4
β’ ((π β Ο β§ ((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)))) β (βπ’ β (Fmlaβsuc π)(βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β¨ βπ β Ο (πβΌππ) = βπππ’) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
48 | 14, 47 | jaod 857 |
. . 3
β’ ((π β Ο β§ ((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)))) β (((πβΌππ) β (Fmlaβsuc π) β¨ βπ’ β (Fmlaβsuc π)(βπ£ β (Fmlaβsuc π)(πβΌππ) = (π’βΌππ£) β¨ βπ β Ο (πβΌππ) = βπππ’)) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
49 | 5, 48 | sylbid 239 |
. 2
β’ ((π β Ο β§ ((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π)))) β ((πβΌππ) β (Fmlaβsuc suc π) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π)))) |
50 | 49 | ex 413 |
1
β’ (π β Ο β (((πβΌππ) β (Fmlaβsuc π) β (π β (Fmlaβsuc π) β§ π β (Fmlaβsuc π))) β ((πβΌππ) β (Fmlaβsuc suc π) β (π β (Fmlaβsuc suc π) β§ π β (Fmlaβsuc suc π))))) |