Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonarlem Structured version   Visualization version   GIF version

Theorem gonarlem 34373
Description: Lemma for gonar 34374 (induction step). (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonarlem (𝑁 ∈ Ο‰ β†’ (((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁))) β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
Distinct variable group:   π‘Ž,𝑏
Allowed substitution hints:   𝑁(π‘Ž,𝑏)

Proof of Theorem gonarlem
Dummy variables 𝑖 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7877 . . . . 5 (𝑁 ∈ Ο‰ β†’ suc 𝑁 ∈ Ο‰)
2 ovexd 7440 . . . . 5 (𝑁 ∈ Ο‰ β†’ (π‘ŽβŠΌπ‘”π‘) ∈ V)
3 isfmlasuc 34367 . . . . 5 ((suc 𝑁 ∈ Ο‰ ∧ (π‘ŽβŠΌπ‘”π‘) ∈ V) β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc suc 𝑁) ↔ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) ∨ βˆƒπ‘’ ∈ (Fmlaβ€˜suc 𝑁)(βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’))))
41, 2, 3syl2anc 584 . . . 4 (𝑁 ∈ Ο‰ β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc suc 𝑁) ↔ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) ∨ βˆƒπ‘’ ∈ (Fmlaβ€˜suc 𝑁)(βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’))))
54adantr 481 . . 3 ((𝑁 ∈ Ο‰ ∧ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)))) β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc suc 𝑁) ↔ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) ∨ βˆƒπ‘’ ∈ (Fmlaβ€˜suc 𝑁)(βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’))))
6 fmlasssuc 34368 . . . . . . . . . . 11 (suc 𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) βŠ† (Fmlaβ€˜suc suc 𝑁))
71, 6syl 17 . . . . . . . . . 10 (𝑁 ∈ Ο‰ β†’ (Fmlaβ€˜suc 𝑁) βŠ† (Fmlaβ€˜suc suc 𝑁))
87sseld 3980 . . . . . . . . 9 (𝑁 ∈ Ο‰ β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) β†’ π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁)))
97sseld 3980 . . . . . . . . 9 (𝑁 ∈ Ο‰ β†’ (𝑏 ∈ (Fmlaβ€˜suc 𝑁) β†’ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))
108, 9anim12d 609 . . . . . . . 8 (𝑁 ∈ Ο‰ β†’ ((π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
1110com12 32 . . . . . . 7 ((π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (𝑁 ∈ Ο‰ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
1211imim2i 16 . . . . . 6 (((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁))) β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (𝑁 ∈ Ο‰ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
1312com23 86 . . . . 5 (((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁))) β†’ (𝑁 ∈ Ο‰ β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
1413impcom 408 . . . 4 ((𝑁 ∈ Ο‰ ∧ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)))) β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
15 gonafv 34329 . . . . . . . . . . . . . 14 ((π‘Ž ∈ V ∧ 𝑏 ∈ V) β†’ (π‘ŽβŠΌπ‘”π‘) = ⟨1o, βŸ¨π‘Ž, π‘βŸ©βŸ©)
1615el2v 3482 . . . . . . . . . . . . 13 (π‘ŽβŠΌπ‘”π‘) = ⟨1o, βŸ¨π‘Ž, π‘βŸ©βŸ©
1716a1i 11 . . . . . . . . . . . 12 ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (π‘ŽβŠΌπ‘”π‘) = ⟨1o, βŸ¨π‘Ž, π‘βŸ©βŸ©)
18 gonafv 34329 . . . . . . . . . . . 12 ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (π‘’βŠΌπ‘”π‘£) = ⟨1o, βŸ¨π‘’, π‘£βŸ©βŸ©)
1917, 18eqeq12d 2748 . . . . . . . . . . 11 ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ ((π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ↔ ⟨1o, βŸ¨π‘Ž, π‘βŸ©βŸ© = ⟨1o, βŸ¨π‘’, π‘£βŸ©βŸ©))
20 1oex 8472 . . . . . . . . . . . 12 1o ∈ V
21 opex 5463 . . . . . . . . . . . 12 βŸ¨π‘Ž, π‘βŸ© ∈ V
2220, 21opth 5475 . . . . . . . . . . 11 (⟨1o, βŸ¨π‘Ž, π‘βŸ©βŸ© = ⟨1o, βŸ¨π‘’, π‘£βŸ©βŸ© ↔ (1o = 1o ∧ βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ©))
2319, 22bitrdi 286 . . . . . . . . . 10 ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ ((π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ↔ (1o = 1o ∧ βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ©)))
2423adantll 712 . . . . . . . . 9 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜suc 𝑁)) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ ((π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ↔ (1o = 1o ∧ βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ©)))
25 vex 3478 . . . . . . . . . . . . . 14 π‘Ž ∈ V
26 vex 3478 . . . . . . . . . . . . . 14 𝑏 ∈ V
2725, 26opth 5475 . . . . . . . . . . . . 13 (βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ© ↔ (π‘Ž = 𝑒 ∧ 𝑏 = 𝑣))
28 eleq1w 2816 . . . . . . . . . . . . . . . 16 (𝑒 = π‘Ž β†’ (𝑒 ∈ (Fmlaβ€˜suc 𝑁) ↔ π‘Ž ∈ (Fmlaβ€˜suc 𝑁)))
2928equcoms 2023 . . . . . . . . . . . . . . 15 (π‘Ž = 𝑒 β†’ (𝑒 ∈ (Fmlaβ€˜suc 𝑁) ↔ π‘Ž ∈ (Fmlaβ€˜suc 𝑁)))
30 eleq1w 2816 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑏 β†’ (𝑣 ∈ (Fmlaβ€˜suc 𝑁) ↔ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)))
3130equcoms 2023 . . . . . . . . . . . . . . 15 (𝑏 = 𝑣 β†’ (𝑣 ∈ (Fmlaβ€˜suc 𝑁) ↔ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)))
3229, 31bi2anan9 637 . . . . . . . . . . . . . 14 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) ↔ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁))))
3332, 11syl6bi 252 . . . . . . . . . . . . 13 ((π‘Ž = 𝑒 ∧ 𝑏 = 𝑣) β†’ ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (𝑁 ∈ Ο‰ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
3427, 33sylbi 216 . . . . . . . . . . . 12 (βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ© β†’ ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (𝑁 ∈ Ο‰ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
3534adantl 482 . . . . . . . . . . 11 ((1o = 1o ∧ βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ©) β†’ ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (𝑁 ∈ Ο‰ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
3635com13 88 . . . . . . . . . 10 (𝑁 ∈ Ο‰ β†’ ((𝑒 ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ ((1o = 1o ∧ βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ©) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
3736impl 456 . . . . . . . . 9 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜suc 𝑁)) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ ((1o = 1o ∧ βŸ¨π‘Ž, π‘βŸ© = βŸ¨π‘’, π‘£βŸ©) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
3824, 37sylbid 239 . . . . . . . 8 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜suc 𝑁)) ∧ 𝑣 ∈ (Fmlaβ€˜suc 𝑁)) β†’ ((π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
3938rexlimdva 3155 . . . . . . 7 ((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
40 gonanegoal 34331 . . . . . . . . . 10 (π‘ŽβŠΌπ‘”π‘) β‰  βˆ€π‘”π‘–π‘’
41 eqneqall 2951 . . . . . . . . . 10 ((π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’ β†’ ((π‘ŽβŠΌπ‘”π‘) β‰  βˆ€π‘”π‘–π‘’ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
4240, 41mpi 20 . . . . . . . . 9 ((π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))
4342a1i 11 . . . . . . . 8 (((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜suc 𝑁)) ∧ 𝑖 ∈ Ο‰) β†’ ((π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
4443rexlimdva 3155 . . . . . . 7 ((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜suc 𝑁)) β†’ (βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’ β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
4539, 44jaod 857 . . . . . 6 ((𝑁 ∈ Ο‰ ∧ 𝑒 ∈ (Fmlaβ€˜suc 𝑁)) β†’ ((βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
4645rexlimdva 3155 . . . . 5 (𝑁 ∈ Ο‰ β†’ (βˆƒπ‘’ ∈ (Fmlaβ€˜suc 𝑁)(βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
4746adantr 481 . . . 4 ((𝑁 ∈ Ο‰ ∧ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)))) β†’ (βˆƒπ‘’ ∈ (Fmlaβ€˜suc 𝑁)(βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
4814, 47jaod 857 . . 3 ((𝑁 ∈ Ο‰ ∧ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)))) β†’ (((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) ∨ βˆƒπ‘’ ∈ (Fmlaβ€˜suc 𝑁)(βˆƒπ‘£ ∈ (Fmlaβ€˜suc 𝑁)(π‘ŽβŠΌπ‘”π‘) = (π‘’βŠΌπ‘”π‘£) ∨ βˆƒπ‘– ∈ Ο‰ (π‘ŽβŠΌπ‘”π‘) = βˆ€π‘”π‘–π‘’)) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
495, 48sylbid 239 . 2 ((𝑁 ∈ Ο‰ ∧ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁)))) β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁))))
5049ex 413 1 (𝑁 ∈ Ο‰ β†’ (((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc 𝑁))) β†’ ((π‘ŽβŠΌπ‘”π‘) ∈ (Fmlaβ€˜suc suc 𝑁) β†’ (π‘Ž ∈ (Fmlaβ€˜suc suc 𝑁) ∧ 𝑏 ∈ (Fmlaβ€˜suc suc 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3947  βŸ¨cop 4633  suc csuc 6363  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851  1oc1o 8455  βŠΌπ‘”cgna 34313  βˆ€π‘”cgol 34314  Fmlacfmla 34316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-map 8818  df-goel 34319  df-gona 34320  df-goal 34321  df-sat 34322  df-fmla 34324
This theorem is referenced by:  gonar  34374
  Copyright terms: Public domain W3C validator