| Step | Hyp | Ref
| Expression |
| 1 | | peano2 7913 |
. . . . 5
⊢ (𝑁 ∈ ω → suc 𝑁 ∈
ω) |
| 2 | | ovexd 7467 |
. . . . 5
⊢ (𝑁 ∈ ω → (𝑎⊼𝑔𝑏) ∈ V) |
| 3 | | isfmlasuc 35394 |
. . . . 5
⊢ ((suc
𝑁 ∈ ω ∧
(𝑎⊼𝑔𝑏) ∈ V) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢)))) |
| 4 | 1, 2, 3 | syl2anc 584 |
. . . 4
⊢ (𝑁 ∈ ω → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc
𝑁) ↔ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢)))) |
| 5 | 4 | adantr 480 |
. . 3
⊢ ((𝑁 ∈ ω ∧ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢)))) |
| 6 | | fmlasssuc 35395 |
. . . . . . . . . . 11
⊢ (suc
𝑁 ∈ ω →
(Fmla‘suc 𝑁) ⊆
(Fmla‘suc suc 𝑁)) |
| 7 | 1, 6 | syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ω →
(Fmla‘suc 𝑁) ⊆
(Fmla‘suc suc 𝑁)) |
| 8 | 7 | sseld 3981 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁))) |
| 9 | 7 | sseld 3981 |
. . . . . . . . 9
⊢ (𝑁 ∈ ω → (𝑏 ∈ (Fmla‘suc 𝑁) → 𝑏 ∈ (Fmla‘suc suc 𝑁))) |
| 10 | 8, 9 | anim12d 609 |
. . . . . . . 8
⊢ (𝑁 ∈ ω → ((𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 11 | 10 | com12 32 |
. . . . . . 7
⊢ ((𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 12 | 11 | imim2i 16 |
. . . . . 6
⊢ (((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) |
| 13 | 12 | com23 86 |
. . . . 5
⊢ (((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → (𝑁 ∈ ω → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) |
| 14 | 13 | impcom 407 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 15 | | gonafv 35356 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎⊼𝑔𝑏) = 〈1o,
〈𝑎, 𝑏〉〉) |
| 16 | 15 | el2v 3486 |
. . . . . . . . . . . . 13
⊢ (𝑎⊼𝑔𝑏) = 〈1o,
〈𝑎, 𝑏〉〉 |
| 17 | 16 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑎⊼𝑔𝑏) = 〈1o, 〈𝑎, 𝑏〉〉) |
| 18 | | gonafv 35356 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑢⊼𝑔𝑣) = 〈1o, 〈𝑢, 𝑣〉〉) |
| 19 | 17, 18 | eqeq12d 2752 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ↔ 〈1o, 〈𝑎, 𝑏〉〉 = 〈1o,
〈𝑢, 𝑣〉〉)) |
| 20 | | 1oex 8517 |
. . . . . . . . . . . 12
⊢
1o ∈ V |
| 21 | | opex 5468 |
. . . . . . . . . . . 12
⊢
〈𝑎, 𝑏〉 ∈ V |
| 22 | 20, 21 | opth 5480 |
. . . . . . . . . . 11
⊢
(〈1o, 〈𝑎, 𝑏〉〉 = 〈1o,
〈𝑢, 𝑣〉〉 ↔ (1o =
1o ∧ 〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉)) |
| 23 | 19, 22 | bitrdi 287 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ↔ (1o = 1o ∧
〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉))) |
| 24 | 23 | adantll 714 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ↔ (1o = 1o ∧
〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉))) |
| 25 | | vex 3483 |
. . . . . . . . . . . . . 14
⊢ 𝑎 ∈ V |
| 26 | | vex 3483 |
. . . . . . . . . . . . . 14
⊢ 𝑏 ∈ V |
| 27 | 25, 26 | opth 5480 |
. . . . . . . . . . . . 13
⊢
(〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉 ↔ (𝑎 = 𝑢 ∧ 𝑏 = 𝑣)) |
| 28 | | eleq1w 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁))) |
| 29 | 28 | equcoms 2018 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁))) |
| 30 | | eleq1w 2823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑏 → (𝑣 ∈ (Fmla‘suc 𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑁))) |
| 31 | 30 | equcoms 2018 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑣 → (𝑣 ∈ (Fmla‘suc 𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑁))) |
| 32 | 29, 31 | bi2anan9 638 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) |
| 33 | 32, 11 | biimtrdi 253 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 𝑢 ∧ 𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) |
| 34 | 27, 33 | sylbi 217 |
. . . . . . . . . . . 12
⊢
(〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉 → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) |
| 35 | 34 | adantl 481 |
. . . . . . . . . . 11
⊢
((1o = 1o ∧ 〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) |
| 36 | 35 | com13 88 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((1o = 1o
∧ 〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) |
| 37 | 36 | impl 455 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((1o = 1o
∧ 〈𝑎, 𝑏〉 = 〈𝑢, 𝑣〉) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 38 | 24, 37 | sylbid 240 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 39 | 38 | rexlimdva 3154 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 40 | | gonanegoal 35358 |
. . . . . . . . . 10
⊢ (𝑎⊼𝑔𝑏) ≠
∀𝑔𝑖𝑢 |
| 41 | | eqneqall 2950 |
. . . . . . . . . 10
⊢ ((𝑎⊼𝑔𝑏) =
∀𝑔𝑖𝑢 → ((𝑎⊼𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 42 | 40, 41 | mpi 20 |
. . . . . . . . 9
⊢ ((𝑎⊼𝑔𝑏) =
∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))) |
| 43 | 42 | a1i 11 |
. . . . . . . 8
⊢ (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑖 ∈ ω) → ((𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 44 | 43 | rexlimdva 3154 |
. . . . . . 7
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) =
∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 45 | 39, 44 | jaod 859 |
. . . . . 6
⊢ ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 46 | 45 | rexlimdva 3154 |
. . . . 5
⊢ (𝑁 ∈ ω →
(∃𝑢 ∈
(Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 47 | 46 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈ ω ∧ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 48 | 14, 47 | jaod 859 |
. . 3
⊢ ((𝑁 ∈ ω ∧ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → (((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎⊼𝑔𝑏) = (𝑢⊼𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎⊼𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 49 | 5, 48 | sylbid 240 |
. 2
⊢ ((𝑁 ∈ ω ∧ ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))) |
| 50 | 49 | ex 412 |
1
⊢ (𝑁 ∈ ω → (((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎⊼𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))) |