Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gonarlem Structured version   Visualization version   GIF version

Theorem gonarlem 34998
Description: Lemma for gonar 34999 (induction step). (Contributed by AV, 21-Oct-2023.)
Assertion
Ref Expression
gonarlem (𝑁 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
Distinct variable group:   𝑎,𝑏
Allowed substitution hints:   𝑁(𝑎,𝑏)

Proof of Theorem gonarlem
Dummy variables 𝑖 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7890 . . . . 5 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
2 ovexd 7449 . . . . 5 (𝑁 ∈ ω → (𝑎𝑔𝑏) ∈ V)
3 isfmlasuc 34992 . . . . 5 ((suc 𝑁 ∈ ω ∧ (𝑎𝑔𝑏) ∈ V) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
41, 2, 3syl2anc 583 . . . 4 (𝑁 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
54adantr 480 . . 3 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) ↔ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢))))
6 fmlasssuc 34993 . . . . . . . . . . 11 (suc 𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
71, 6syl 17 . . . . . . . . . 10 (𝑁 ∈ ω → (Fmla‘suc 𝑁) ⊆ (Fmla‘suc suc 𝑁))
87sseld 3977 . . . . . . . . 9 (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc 𝑁) → 𝑎 ∈ (Fmla‘suc suc 𝑁)))
97sseld 3977 . . . . . . . . 9 (𝑁 ∈ ω → (𝑏 ∈ (Fmla‘suc 𝑁) → 𝑏 ∈ (Fmla‘suc suc 𝑁)))
108, 9anim12d 608 . . . . . . . 8 (𝑁 ∈ ω → ((𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
1110com12 32 . . . . . . 7 ((𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
1211imim2i 16 . . . . . 6 (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
1312com23 86 . . . . 5 (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → (𝑁 ∈ ω → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
1413impcom 407 . . . 4 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
15 gonafv 34954 . . . . . . . . . . . . . 14 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
1615el2v 3478 . . . . . . . . . . . . 13 (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩
1716a1i 11 . . . . . . . . . . . 12 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑎𝑔𝑏) = ⟨1o, ⟨𝑎, 𝑏⟩⟩)
18 gonafv 34954 . . . . . . . . . . . 12 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑢𝑔𝑣) = ⟨1o, ⟨𝑢, 𝑣⟩⟩)
1917, 18eqeq12d 2744 . . . . . . . . . . 11 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ ⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩))
20 1oex 8490 . . . . . . . . . . . 12 1o ∈ V
21 opex 5460 . . . . . . . . . . . 12 𝑎, 𝑏⟩ ∈ V
2220, 21opth 5472 . . . . . . . . . . 11 (⟨1o, ⟨𝑎, 𝑏⟩⟩ = ⟨1o, ⟨𝑢, 𝑣⟩⟩ ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩))
2319, 22bitrdi 287 . . . . . . . . . 10 ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩)))
2423adantll 713 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) ↔ (1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩)))
25 vex 3474 . . . . . . . . . . . . . 14 𝑎 ∈ V
26 vex 3474 . . . . . . . . . . . . . 14 𝑏 ∈ V
2725, 26opth 5472 . . . . . . . . . . . . 13 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ ↔ (𝑎 = 𝑢𝑏 = 𝑣))
28 eleq1w 2812 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑎 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
2928equcoms 2016 . . . . . . . . . . . . . . 15 (𝑎 = 𝑢 → (𝑢 ∈ (Fmla‘suc 𝑁) ↔ 𝑎 ∈ (Fmla‘suc 𝑁)))
30 eleq1w 2812 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑏 → (𝑣 ∈ (Fmla‘suc 𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑁)))
3130equcoms 2016 . . . . . . . . . . . . . . 15 (𝑏 = 𝑣 → (𝑣 ∈ (Fmla‘suc 𝑁) ↔ 𝑏 ∈ (Fmla‘suc 𝑁)))
3229, 31bi2anan9 637 . . . . . . . . . . . . . 14 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) ↔ (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))))
3332, 11biimtrdi 252 . . . . . . . . . . . . 13 ((𝑎 = 𝑢𝑏 = 𝑣) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3427, 33sylbi 216 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩ → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3534adantl 481 . . . . . . . . . . 11 ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → (𝑁 ∈ ω → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3635com13 88 . . . . . . . . . 10 (𝑁 ∈ ω → ((𝑢 ∈ (Fmla‘suc 𝑁) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
3736impl 455 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((1o = 1o ∧ ⟨𝑎, 𝑏⟩ = ⟨𝑢, 𝑣⟩) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
3824, 37sylbid 239 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑣 ∈ (Fmla‘suc 𝑁)) → ((𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
3938rexlimdva 3151 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
40 gonanegoal 34956 . . . . . . . . . 10 (𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢
41 eqneqall 2947 . . . . . . . . . 10 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → ((𝑎𝑔𝑏) ≠ ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4240, 41mpi 20 . . . . . . . . 9 ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))
4342a1i 11 . . . . . . . 8 (((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) ∧ 𝑖 ∈ ω) → ((𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4443rexlimdva 3151 . . . . . . 7 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → (∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢 → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4539, 44jaod 858 . . . . . 6 ((𝑁 ∈ ω ∧ 𝑢 ∈ (Fmla‘suc 𝑁)) → ((∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4645rexlimdva 3151 . . . . 5 (𝑁 ∈ ω → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4746adantr 480 . . . 4 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → (∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
4814, 47jaod 858 . . 3 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) ∨ ∃𝑢 ∈ (Fmla‘suc 𝑁)(∃𝑣 ∈ (Fmla‘suc 𝑁)(𝑎𝑔𝑏) = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω (𝑎𝑔𝑏) = ∀𝑔𝑖𝑢)) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
495, 48sylbid 239 . 2 ((𝑁 ∈ ω ∧ ((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁)))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁))))
5049ex 412 1 (𝑁 ∈ ω → (((𝑎𝑔𝑏) ∈ (Fmla‘suc 𝑁) → (𝑎 ∈ (Fmla‘suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc 𝑁))) → ((𝑎𝑔𝑏) ∈ (Fmla‘suc suc 𝑁) → (𝑎 ∈ (Fmla‘suc suc 𝑁) ∧ 𝑏 ∈ (Fmla‘suc suc 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2936  wrex 3066  Vcvv 3470  wss 3945  cop 4630  suc csuc 6365  cfv 6542  (class class class)co 7414  ωcom 7864  1oc1o 8473  𝑔cgna 34938  𝑔cgol 34939  Fmlacfmla 34941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-map 8840  df-goel 34944  df-gona 34945  df-goal 34946  df-sat 34947  df-fmla 34949
This theorem is referenced by:  gonar  34999
  Copyright terms: Public domain W3C validator