MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidlcan Structured version   Visualization version   GIF version

Theorem grpidlcan 19022
Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidrcan.b 𝐵 = (Base‘𝐺)
grpidrcan.p + = (+g𝐺)
grpidrcan.o 0 = (0g𝐺)
Assertion
Ref Expression
grpidlcan ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = 𝑋𝑍 = 0 ))

Proof of Theorem grpidlcan
StepHypRef Expression
1 grpidrcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpidrcan.p . . . . 5 + = (+g𝐺)
3 grpidrcan.o . . . . 5 0 = (0g𝐺)
41, 2, 3grplid 18985 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
543adant3 1133 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ( 0 + 𝑋) = 𝑋)
65eqeq2d 2748 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ (𝑍 + 𝑋) = 𝑋))
7 simp1 1137 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝐺 ∈ Grp)
8 simp3 1139 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝑍𝐵)
91, 3grpidcl 18983 . . . 4 (𝐺 ∈ Grp → 0𝐵)
1093ad2ant1 1134 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 0𝐵)
11 simp2 1138 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → 𝑋𝐵)
121, 2grprcan 18991 . . 3 ((𝐺 ∈ Grp ∧ (𝑍𝐵0𝐵𝑋𝐵)) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 ))
137, 8, 10, 11, 12syl13anc 1374 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 ))
146, 13bitr3d 281 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑍𝐵) → ((𝑍 + 𝑋) = 𝑋𝑍 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954
This theorem is referenced by:  grpidssd  19034
  Copyright terms: Public domain W3C validator