![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidlcan | Structured version Visualization version GIF version |
Description: If left adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.) |
Ref | Expression |
---|---|
grpidrcan.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidrcan.p | ⊢ + = (+g‘𝐺) |
grpidrcan.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidlcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = 𝑋 ↔ 𝑍 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidrcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpidrcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpidrcan.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grplid 18827 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 5 | eqeq2d 2742 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ (𝑍 + 𝑋) = 𝑋)) |
7 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝐺 ∈ Grp) | |
8 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
9 | 1, 3 | grpidcl 18825 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
10 | 9 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | grprcan 18833 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑍 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 )) |
13 | 7, 8, 10, 11, 12 | syl13anc 1372 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = ( 0 + 𝑋) ↔ 𝑍 = 0 )) |
14 | 6, 13 | bitr3d 280 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑍 + 𝑋) = 𝑋 ↔ 𝑍 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 +gcplusg 17179 0gc0g 17367 Grpcgrp 18794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fv 6540 df-riota 7349 df-ov 7396 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-grp 18797 |
This theorem is referenced by: grpidssd 18873 |
Copyright terms: Public domain | W3C validator |