MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvinv Structured version   Visualization version   GIF version

Theorem grpinvinv 18166
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)

Proof of Theorem grpinvinv
StepHypRef Expression
1 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
31, 2grpinvcl 18151 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
4 eqid 2824 . . . . 5 (+g𝐺) = (+g𝐺)
5 eqid 2824 . . . . 5 (0g𝐺) = (0g𝐺)
61, 4, 5, 2grprinv 18153 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
73, 6syldan 594 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
81, 4, 5, 2grplinv 18152 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)𝑋) = (0g𝐺))
97, 8eqtr4d 2862 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋))
10 simpl 486 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
111, 2grpinvcl 18151 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
123, 11syldan 594 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
13 simpr 488 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
141, 4grplcan 18161 . . 3 ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁𝑋)) ∈ 𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
1510, 12, 13, 3, 14syl13anc 1369 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
169, 15mpbid 235 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7149  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Grpcgrp 18103  invgcminusg 18104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-riota 7107  df-ov 7152  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107
This theorem is referenced by:  grpinv11  18168  grpinvnz  18170  grpsubinv  18172  grpinvsub  18181  grpsubeq0  18185  grpnpcan  18191  mulgneg  18246  mulgnegneg  18247  mulginvinv  18253  mulgdir  18259  mulgass  18264  eqger  18330  frgpuptinv  18897  ablsub2inv  18931  mulgdi  18947  invghm  18954  ringm2neg  19351  unitinvinv  19428  unitnegcl  19434  irrednegb  19464  abvneg  19605  lspsnneg  19778  islindf4  20584  tgpconncomp  22724  archirngz  30853  archiabllem1b  30856  baerlem5amN  38960  baerlem5bmN  38961  baerlem5abmN  38962  nelsubginvcld  39359
  Copyright terms: Public domain W3C validator