| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvinv | Structured version Visualization version GIF version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 18970 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 4 | eqid 2735 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 4, 5, 2 | grprinv 18973 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 7 | 3, 6 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 8 | 1, 4, 5, 2 | grplinv 18972 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑋) = (0g‘𝐺)) |
| 9 | 7, 8 | eqtr4d 2773 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋)) |
| 10 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 11 | 1, 2 | grpinvcl 18970 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 12 | 3, 11 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 13 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 1, 4 | grplcan 18983 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁‘𝑋)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 15 | 10, 12, 13, 3, 14 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 16 | 9, 15 | mpbid 232 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Grpcgrp 18916 invgcminusg 18917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 |
| This theorem is referenced by: grpinv11 18990 grpinv11OLD 18991 grpinvnz 18993 grpsubinv 18995 grpinvsub 19005 grpsubeq0 19009 grpnpcan 19015 mulgneg 19075 mulgnegneg 19076 mulginvinv 19083 mulgdir 19089 mulgass 19094 eqger 19161 frgpuptinv 19752 ablsub2inv 19789 mulgdi 19807 invghm 19814 rngm2neg 20129 unitinvinv 20351 unitnegcl 20357 irrednegb 20391 abvneg 20786 lspsnneg 20963 islindf4 21798 tgpconncomp 24051 archirngz 33187 archiabllem1b 33190 ply1divalg3 35664 baerlem5amN 41735 baerlem5bmN 41736 baerlem5abmN 41737 fldhmf1 42103 nelsubginvcld 42519 |
| Copyright terms: Public domain | W3C validator |