| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvinv | Structured version Visualization version GIF version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 18919 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 4 | eqid 2729 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 4, 5, 2 | grprinv 18922 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 7 | 3, 6 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 8 | 1, 4, 5, 2 | grplinv 18921 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑋) = (0g‘𝐺)) |
| 9 | 7, 8 | eqtr4d 2767 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋)) |
| 10 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 11 | 1, 2 | grpinvcl 18919 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 12 | 3, 11 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 13 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 1, 4 | grplcan 18932 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁‘𝑋)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 15 | 10, 12, 13, 3, 14 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 16 | 9, 15 | mpbid 232 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 |
| This theorem is referenced by: grpinv11 18939 grpinv11OLD 18940 grpinvnz 18942 grpsubinv 18944 grpinvsub 18954 grpsubeq0 18958 grpnpcan 18964 mulgneg 19024 mulgnegneg 19025 mulginvinv 19032 mulgdir 19038 mulgass 19043 eqger 19110 frgpuptinv 19701 ablsub2inv 19738 mulgdi 19756 invghm 19763 rngm2neg 20078 unitinvinv 20300 unitnegcl 20306 irrednegb 20340 abvneg 20735 lspsnneg 20912 islindf4 21747 tgpconncomp 24000 archirngz 33143 archiabllem1b 33146 ply1divalg3 35629 baerlem5amN 41710 baerlem5bmN 41711 baerlem5abmN 41712 fldhmf1 42078 nelsubginvcld 42484 |
| Copyright terms: Public domain | W3C validator |