![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvinv | Structured version Visualization version GIF version |
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
3 | 1, 2 | grpinvcl 18803 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
4 | eqid 2733 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
5 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
6 | 1, 4, 5, 2 | grprinv 18806 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
7 | 3, 6 | syldan 592 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
8 | 1, 4, 5, 2 | grplinv 18805 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑋) = (0g‘𝐺)) |
9 | 7, 8 | eqtr4d 2776 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋)) |
10 | simpl 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | |
11 | 1, 2 | grpinvcl 18803 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
12 | 3, 11 | syldan 592 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
13 | simpr 486 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
14 | 1, 4 | grplcan 18814 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁‘𝑋)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
15 | 10, 12, 13, 3, 14 | syl13anc 1373 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
16 | 9, 15 | mpbid 231 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ‘cfv 6497 (class class class)co 7358 Basecbs 17088 +gcplusg 17138 0gc0g 17326 Grpcgrp 18753 invgcminusg 18754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-riota 7314 df-ov 7361 df-0g 17328 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-grp 18756 df-minusg 18757 |
This theorem is referenced by: grpinv11 18821 grpinvnz 18823 grpsubinv 18825 grpinvsub 18834 grpsubeq0 18838 grpnpcan 18844 mulgneg 18899 mulgnegneg 18900 mulginvinv 18907 mulgdir 18913 mulgass 18918 eqger 18985 frgpuptinv 19558 ablsub2inv 19594 mulgdi 19610 invghm 19617 ringm2neg 20027 unitinvinv 20109 unitnegcl 20115 irrednegb 20147 abvneg 20307 lspsnneg 20482 islindf4 21260 tgpconncomp 23480 archirngz 32074 archiabllem1b 32077 baerlem5amN 40225 baerlem5bmN 40226 baerlem5abmN 40227 fldhmf1 40593 nelsubginvcld 40716 |
Copyright terms: Public domain | W3C validator |