MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvinv Structured version   Visualization version   GIF version

Theorem grpinvinv 19023
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)

Proof of Theorem grpinvinv
StepHypRef Expression
1 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
31, 2grpinvcl 19005 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
4 eqid 2737 . . . . 5 (+g𝐺) = (+g𝐺)
5 eqid 2737 . . . . 5 (0g𝐺) = (0g𝐺)
61, 4, 5, 2grprinv 19008 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
73, 6syldan 591 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
81, 4, 5, 2grplinv 19007 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)𝑋) = (0g𝐺))
97, 8eqtr4d 2780 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋))
10 simpl 482 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
111, 2grpinvcl 19005 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
123, 11syldan 591 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
13 simpr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
141, 4grplcan 19018 . . 3 ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁𝑋)) ∈ 𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
1510, 12, 13, 3, 14syl13anc 1374 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
169, 15mpbid 232 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955
This theorem is referenced by:  grpinv11  19025  grpinv11OLD  19026  grpinvnz  19028  grpsubinv  19030  grpinvsub  19040  grpsubeq0  19044  grpnpcan  19050  mulgneg  19110  mulgnegneg  19111  mulginvinv  19118  mulgdir  19124  mulgass  19129  eqger  19196  frgpuptinv  19789  ablsub2inv  19826  mulgdi  19844  invghm  19851  rngm2neg  20166  unitinvinv  20391  unitnegcl  20397  irrednegb  20431  abvneg  20827  lspsnneg  21004  islindf4  21858  tgpconncomp  24121  archirngz  33196  archiabllem1b  33199  ply1divalg3  35647  baerlem5amN  41718  baerlem5bmN  41719  baerlem5abmN  41720  fldhmf1  42091  nelsubginvcld  42506
  Copyright terms: Public domain W3C validator