| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvinv | Structured version Visualization version GIF version | ||
| Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpinvinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinvinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 3 | 1, 2 | grpinvcl 19005 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 4 | eqid 2737 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 1, 4, 5, 2 | grprinv 19008 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 7 | 3, 6 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = (0g‘𝐺)) |
| 8 | 1, 4, 5, 2 | grplinv 19007 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)𝑋) = (0g‘𝐺)) |
| 9 | 7, 8 | eqtr4d 2780 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋)) |
| 10 | simpl 482 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝐺 ∈ Grp) | |
| 11 | 1, 2 | grpinvcl 19005 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ (𝑁‘𝑋) ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 12 | 3, 11 | syldan 591 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) ∈ 𝐵) |
| 13 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 1, 4 | grplcan 19018 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁‘𝑋)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 15 | 10, 12, 13, 3, 14 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (((𝑁‘𝑋)(+g‘𝐺)(𝑁‘(𝑁‘𝑋))) = ((𝑁‘𝑋)(+g‘𝐺)𝑋) ↔ (𝑁‘(𝑁‘𝑋)) = 𝑋)) |
| 16 | 9, 15 | mpbid 232 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑁‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 Grpcgrp 18951 invgcminusg 18952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-riota 7388 df-ov 7434 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 |
| This theorem is referenced by: grpinv11 19025 grpinv11OLD 19026 grpinvnz 19028 grpsubinv 19030 grpinvsub 19040 grpsubeq0 19044 grpnpcan 19050 mulgneg 19110 mulgnegneg 19111 mulginvinv 19118 mulgdir 19124 mulgass 19129 eqger 19196 frgpuptinv 19789 ablsub2inv 19826 mulgdi 19844 invghm 19851 rngm2neg 20166 unitinvinv 20391 unitnegcl 20397 irrednegb 20431 abvneg 20827 lspsnneg 21004 islindf4 21858 tgpconncomp 24121 archirngz 33196 archiabllem1b 33199 ply1divalg3 35647 baerlem5amN 41718 baerlem5bmN 41719 baerlem5abmN 41720 fldhmf1 42091 nelsubginvcld 42506 |
| Copyright terms: Public domain | W3C validator |