MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvinv Structured version   Visualization version   GIF version

Theorem grpinvinv 17869
Description: Double inverse law for groups. Lemma 2.2.1(c) of [Herstein] p. 55. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)

Proof of Theorem grpinvinv
StepHypRef Expression
1 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
31, 2grpinvcl 17854 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
4 eqid 2778 . . . . 5 (+g𝐺) = (+g𝐺)
5 eqid 2778 . . . . 5 (0g𝐺) = (0g𝐺)
61, 4, 5, 2grprinv 17856 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
73, 6syldan 585 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = (0g𝐺))
81, 4, 5, 2grplinv 17855 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)𝑋) = (0g𝐺))
97, 8eqtr4d 2817 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋))
10 simpl 476 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
111, 2grpinvcl 17854 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁𝑋) ∈ 𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
123, 11syldan 585 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) ∈ 𝐵)
13 simpr 479 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → 𝑋𝐵)
141, 4grplcan 17864 . . 3 ((𝐺 ∈ Grp ∧ ((𝑁‘(𝑁𝑋)) ∈ 𝐵𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
1510, 12, 13, 3, 14syl13anc 1440 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (((𝑁𝑋)(+g𝐺)(𝑁‘(𝑁𝑋))) = ((𝑁𝑋)(+g𝐺)𝑋) ↔ (𝑁‘(𝑁𝑋)) = 𝑋))
169, 15mpbid 224 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁‘(𝑁𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  cfv 6135  (class class class)co 6922  Basecbs 16255  +gcplusg 16338  0gc0g 16486  Grpcgrp 17809  invgcminusg 17810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813
This theorem is referenced by:  grpinv11  17871  grpinvnz  17873  grpsubinv  17875  grpinvsub  17884  grpsubeq0  17888  grpnpcan  17894  mulgneg  17946  mulgnegneg  17947  mulginvinv  17952  mulgdir  17958  mulgass  17963  eqger  18028  frgpuptinv  18570  ablsub2inv  18602  mulgdi  18618  invghm  18625  ringm2neg  18985  unitinvinv  19062  unitnegcl  19068  irrednegb  19098  abvneg  19226  lspsnneg  19401  islindf4  20581  tgpconncomp  22324  archirngz  30305  archiabllem1b  30308  baerlem5amN  37872  baerlem5bmN  37873  baerlem5abmN  37874  nelsubginvcld  38133
  Copyright terms: Public domain W3C validator