MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidssd Structured version   Visualization version   GIF version

Theorem grpidssd 18931
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m (𝜑𝑀 ∈ Grp)
grpidssd.s (𝜑𝑆 ∈ Grp)
grpidssd.b 𝐵 = (Base‘𝑆)
grpidssd.c (𝜑𝐵 ⊆ (Base‘𝑀))
grpidssd.o (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
grpidssd (𝜑 → (0g𝑀) = (0g𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem grpidssd
StepHypRef Expression
1 grpidssd.s . . . . . 6 (𝜑𝑆 ∈ Grp)
2 grpidssd.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2733 . . . . . . 7 (0g𝑆) = (0g𝑆)
42, 3grpidcl 18880 . . . . . 6 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝐵)
51, 4syl 17 . . . . 5 (𝜑 → (0g𝑆) ∈ 𝐵)
6 grpidssd.o . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
7 oveq1 7359 . . . . . . 7 (𝑥 = (0g𝑆) → (𝑥(+g𝑀)𝑦) = ((0g𝑆)(+g𝑀)𝑦))
8 oveq1 7359 . . . . . . 7 (𝑥 = (0g𝑆) → (𝑥(+g𝑆)𝑦) = ((0g𝑆)(+g𝑆)𝑦))
97, 8eqeq12d 2749 . . . . . 6 (𝑥 = (0g𝑆) → ((𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦) ↔ ((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑆)𝑦)))
10 oveq2 7360 . . . . . . 7 (𝑦 = (0g𝑆) → ((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑀)(0g𝑆)))
11 oveq2 7360 . . . . . . 7 (𝑦 = (0g𝑆) → ((0g𝑆)(+g𝑆)𝑦) = ((0g𝑆)(+g𝑆)(0g𝑆)))
1210, 11eqeq12d 2749 . . . . . 6 (𝑦 = (0g𝑆) → (((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑆)𝑦) ↔ ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆))))
139, 12rspc2va 3585 . . . . 5 ((((0g𝑆) ∈ 𝐵 ∧ (0g𝑆) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦)) → ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆)))
145, 5, 6, 13syl21anc 837 . . . 4 (𝜑 → ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆)))
15 eqid 2733 . . . . . 6 (+g𝑆) = (+g𝑆)
162, 15, 3grplid 18882 . . . . 5 ((𝑆 ∈ Grp ∧ (0g𝑆) ∈ 𝐵) → ((0g𝑆)(+g𝑆)(0g𝑆)) = (0g𝑆))
171, 4, 16syl2anc2 585 . . . 4 (𝜑 → ((0g𝑆)(+g𝑆)(0g𝑆)) = (0g𝑆))
1814, 17eqtrd 2768 . . 3 (𝜑 → ((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆))
19 grpidssd.m . . . 4 (𝜑𝑀 ∈ Grp)
20 grpidssd.c . . . . 5 (𝜑𝐵 ⊆ (Base‘𝑀))
2120, 5sseldd 3931 . . . 4 (𝜑 → (0g𝑆) ∈ (Base‘𝑀))
22 eqid 2733 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
23 eqid 2733 . . . . 5 (+g𝑀) = (+g𝑀)
24 eqid 2733 . . . . 5 (0g𝑀) = (0g𝑀)
2522, 23, 24grpidlcan 18919 . . . 4 ((𝑀 ∈ Grp ∧ (0g𝑆) ∈ (Base‘𝑀) ∧ (0g𝑆) ∈ (Base‘𝑀)) → (((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆) ↔ (0g𝑆) = (0g𝑀)))
2619, 21, 21, 25syl3anc 1373 . . 3 (𝜑 → (((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆) ↔ (0g𝑆) = (0g𝑀)))
2718, 26mpbid 232 . 2 (𝜑 → (0g𝑆) = (0g𝑀))
2827eqcomd 2739 1 (𝜑 → (0g𝑀) = (0g𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wral 3048  wss 3898  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  Grpcgrp 18848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-riota 7309  df-ov 7355  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851
This theorem is referenced by:  grpinvssd  18932
  Copyright terms: Public domain W3C validator