MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidssd Structured version   Visualization version   GIF version

Theorem grpidssd 17852
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then both groups have the same identity element. (Contributed by AV, 15-Mar-2019.)
Hypotheses
Ref Expression
grpidssd.m (𝜑𝑀 ∈ Grp)
grpidssd.s (𝜑𝑆 ∈ Grp)
grpidssd.b 𝐵 = (Base‘𝑆)
grpidssd.c (𝜑𝐵 ⊆ (Base‘𝑀))
grpidssd.o (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
grpidssd (𝜑 → (0g𝑀) = (0g𝑆))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem grpidssd
StepHypRef Expression
1 grpidssd.s . . . . . 6 (𝜑𝑆 ∈ Grp)
2 grpidssd.b . . . . . . 7 𝐵 = (Base‘𝑆)
3 eqid 2825 . . . . . . 7 (0g𝑆) = (0g𝑆)
42, 3grpidcl 17811 . . . . . 6 (𝑆 ∈ Grp → (0g𝑆) ∈ 𝐵)
51, 4syl 17 . . . . 5 (𝜑 → (0g𝑆) ∈ 𝐵)
6 grpidssd.o . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦))
7 oveq1 6917 . . . . . . 7 (𝑥 = (0g𝑆) → (𝑥(+g𝑀)𝑦) = ((0g𝑆)(+g𝑀)𝑦))
8 oveq1 6917 . . . . . . 7 (𝑥 = (0g𝑆) → (𝑥(+g𝑆)𝑦) = ((0g𝑆)(+g𝑆)𝑦))
97, 8eqeq12d 2840 . . . . . 6 (𝑥 = (0g𝑆) → ((𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦) ↔ ((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑆)𝑦)))
10 oveq2 6918 . . . . . . 7 (𝑦 = (0g𝑆) → ((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑀)(0g𝑆)))
11 oveq2 6918 . . . . . . 7 (𝑦 = (0g𝑆) → ((0g𝑆)(+g𝑆)𝑦) = ((0g𝑆)(+g𝑆)(0g𝑆)))
1210, 11eqeq12d 2840 . . . . . 6 (𝑦 = (0g𝑆) → (((0g𝑆)(+g𝑀)𝑦) = ((0g𝑆)(+g𝑆)𝑦) ↔ ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆))))
139, 12rspc2va 3540 . . . . 5 ((((0g𝑆) ∈ 𝐵 ∧ (0g𝑆) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑀)𝑦) = (𝑥(+g𝑆)𝑦)) → ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆)))
145, 5, 6, 13syl21anc 871 . . . 4 (𝜑 → ((0g𝑆)(+g𝑀)(0g𝑆)) = ((0g𝑆)(+g𝑆)(0g𝑆)))
15 eqid 2825 . . . . . 6 (+g𝑆) = (+g𝑆)
162, 15, 3grplid 17813 . . . . 5 ((𝑆 ∈ Grp ∧ (0g𝑆) ∈ 𝐵) → ((0g𝑆)(+g𝑆)(0g𝑆)) = (0g𝑆))
171, 5, 16syl2anc 579 . . . 4 (𝜑 → ((0g𝑆)(+g𝑆)(0g𝑆)) = (0g𝑆))
1814, 17eqtrd 2861 . . 3 (𝜑 → ((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆))
19 grpidssd.m . . . 4 (𝜑𝑀 ∈ Grp)
20 grpidssd.c . . . . 5 (𝜑𝐵 ⊆ (Base‘𝑀))
2120, 5sseldd 3828 . . . 4 (𝜑 → (0g𝑆) ∈ (Base‘𝑀))
22 eqid 2825 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
23 eqid 2825 . . . . 5 (+g𝑀) = (+g𝑀)
24 eqid 2825 . . . . 5 (0g𝑀) = (0g𝑀)
2522, 23, 24grpidlcan 17842 . . . 4 ((𝑀 ∈ Grp ∧ (0g𝑆) ∈ (Base‘𝑀) ∧ (0g𝑆) ∈ (Base‘𝑀)) → (((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆) ↔ (0g𝑆) = (0g𝑀)))
2619, 21, 21, 25syl3anc 1494 . . 3 (𝜑 → (((0g𝑆)(+g𝑀)(0g𝑆)) = (0g𝑆) ↔ (0g𝑆) = (0g𝑀)))
2718, 26mpbid 224 . 2 (𝜑 → (0g𝑆) = (0g𝑀))
2827eqcomd 2831 1 (𝜑 → (0g𝑀) = (0g𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1656  wcel 2164  wral 3117  wss 3798  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  0gc0g 16460  Grpcgrp 17783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-riota 6871  df-ov 6913  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786
This theorem is referenced by:  grpinvssd  17853
  Copyright terms: Public domain W3C validator