Proof of Theorem grpidssd
| Step | Hyp | Ref
| Expression |
| 1 | | grpidssd.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ Grp) |
| 2 | | grpidssd.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑆) |
| 3 | | eqid 2737 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
| 4 | 2, 3 | grpidcl 18983 |
. . . . . 6
⊢ (𝑆 ∈ Grp →
(0g‘𝑆)
∈ 𝐵) |
| 5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → (0g‘𝑆) ∈ 𝐵) |
| 6 | | grpidssd.o |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
| 7 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)𝑦)) |
| 8 | | oveq1 7438 |
. . . . . . 7
⊢ (𝑥 = (0g‘𝑆) → (𝑥(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦)) |
| 9 | 7, 8 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑆) → ((𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦))) |
| 10 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑦 = (0g‘𝑆) →
((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆))) |
| 11 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑦 = (0g‘𝑆) →
((0g‘𝑆)(+g‘𝑆)𝑦) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 12 | 10, 11 | eqeq12d 2753 |
. . . . . 6
⊢ (𝑦 = (0g‘𝑆) →
(((0g‘𝑆)(+g‘𝑀)𝑦) = ((0g‘𝑆)(+g‘𝑆)𝑦) ↔ ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)))) |
| 13 | 9, 12 | rspc2va 3634 |
. . . . 5
⊢
((((0g‘𝑆) ∈ 𝐵 ∧ (0g‘𝑆) ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑀)𝑦) = (𝑥(+g‘𝑆)𝑦)) → ((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 14 | 5, 5, 6, 13 | syl21anc 838 |
. . . 4
⊢ (𝜑 →
((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = ((0g‘𝑆)(+g‘𝑆)(0g‘𝑆))) |
| 15 | | eqid 2737 |
. . . . . 6
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 16 | 2, 15, 3 | grplid 18985 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧
(0g‘𝑆)
∈ 𝐵) →
((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 17 | 1, 4, 16 | syl2anc2 585 |
. . . 4
⊢ (𝜑 →
((0g‘𝑆)(+g‘𝑆)(0g‘𝑆)) = (0g‘𝑆)) |
| 18 | 14, 17 | eqtrd 2777 |
. . 3
⊢ (𝜑 →
((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆)) |
| 19 | | grpidssd.m |
. . . 4
⊢ (𝜑 → 𝑀 ∈ Grp) |
| 20 | | grpidssd.c |
. . . . 5
⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑀)) |
| 21 | 20, 5 | sseldd 3984 |
. . . 4
⊢ (𝜑 → (0g‘𝑆) ∈ (Base‘𝑀)) |
| 22 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 23 | | eqid 2737 |
. . . . 5
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 24 | | eqid 2737 |
. . . . 5
⊢
(0g‘𝑀) = (0g‘𝑀) |
| 25 | 22, 23, 24 | grpidlcan 19022 |
. . . 4
⊢ ((𝑀 ∈ Grp ∧
(0g‘𝑆)
∈ (Base‘𝑀) ∧
(0g‘𝑆)
∈ (Base‘𝑀))
→ (((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 26 | 19, 21, 21, 25 | syl3anc 1373 |
. . 3
⊢ (𝜑 →
(((0g‘𝑆)(+g‘𝑀)(0g‘𝑆)) = (0g‘𝑆) ↔ (0g‘𝑆) = (0g‘𝑀))) |
| 27 | 18, 26 | mpbid 232 |
. 2
⊢ (𝜑 → (0g‘𝑆) = (0g‘𝑀)) |
| 28 | 27 | eqcomd 2743 |
1
⊢ (𝜑 → (0g‘𝑀) = (0g‘𝑆)) |