![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 17745 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 17623 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ‘cfv 6101 Basecbs 16184 0gc0g 16415 Mndcmnd 17609 Grpcgrp 17738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-riota 6839 df-ov 6881 df-0g 16417 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-grp 17741 |
This theorem is referenced by: grpbn0 17767 grprcan 17771 grpid 17773 isgrpid2 17774 grprinv 17785 grpidinv 17791 grpinvid 17792 grpidrcan 17796 grpidlcan 17797 grpidssd 17807 grpinvval2 17814 grpsubid1 17816 imasgrp 17847 mulgcl 17874 mulgz 17883 subg0 17913 subg0cl 17915 issubg4 17926 0subg 17932 nmzsubg 17948 eqgid 17959 qusgrp 17962 qus0 17965 ghmid 17979 ghmpreima 17995 ghmf1 18002 gafo 18041 gaid 18044 gass 18046 gaorber 18053 gastacl 18054 lactghmga 18136 cayleylem2 18145 symgsssg 18199 symgfisg 18200 od1 18289 gexdvds 18312 sylow1lem2 18327 sylow3lem1 18355 lsmdisj2 18408 0frgp 18507 odadd1 18566 torsubg 18572 oddvdssubg 18573 0cyg 18609 prmcyg 18610 telgsums 18706 dprdfadd 18735 dprdz 18745 pgpfac1lem3a 18791 ring0cl 18885 ringlz 18903 ringrz 18904 kerf1hrm 19061 isdrng2 19075 srng0 19178 lmod0vcl 19210 islmhm2 19359 psr0cl 19717 mplsubglem 19757 evl1gsumd 20043 frgpcyg 20243 ip0l 20305 ocvlss 20341 grpvlinv 20526 matinvgcell 20566 mat0dim0 20599 mdetdiag 20731 mdetuni0 20753 chpdmatlem2 20972 chp0mat 20979 istgp2 22223 cldsubg 22242 tgpconncompeqg 22243 tgpconncomp 22244 snclseqg 22247 tgphaus 22248 tgpt1 22249 qustgphaus 22254 tgptsmscls 22281 nrmmetd 22707 nmfval2 22723 nmval2 22724 nmf2 22725 ngpds3 22740 nmge0 22749 nmeq0 22750 nminv 22753 nmmtri 22754 nmrtri 22756 nm0 22761 tngnm 22783 idnghm 22875 nmcn 22975 clmvz 23238 nmoleub2lem2 23243 nglmle 23428 mdeg0 24171 dchrinv 25338 dchr1re 25340 dchrpt 25344 dchrsum2 25345 dchrhash 25348 rpvmasumlem 25528 rpvmasum2 25553 dchrisum0re 25554 ogrpinvOLD 30231 ogrpinv0lt 30239 ogrpinvlt 30240 isarchi3 30257 archirng 30258 archirngz 30259 archiabllem1b 30262 orngsqr 30320 ornglmulle 30321 orngrmulle 30322 ornglmullt 30323 orngrmullt 30324 orngmullt 30325 ofldchr 30330 isarchiofld 30333 qqh0 30544 sconnpi1 31738 lfl0f 35090 lkrlss 35116 lshpkrlem1 35131 lkrin 35185 dvhgrp 37128 rnglz 42683 zrrnghm 42716 ascl0 42964 evl1at0 42978 |
Copyright terms: Public domain | W3C validator |