![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18822 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18636 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 Basecbs 17140 0gc0g 17381 Mndcmnd 18621 Grpcgrp 18815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-riota 7361 df-ov 7408 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 |
This theorem is referenced by: grpbn0 18847 grprcan 18854 grpid 18856 isgrpid2 18857 grprinv 18871 grpidinv 18879 grpinvid 18880 grpidrcan 18884 grpidlcan 18885 grpidssd 18895 grpinvval2 18902 grpsubid1 18904 imasgrp 18935 mulgcl 18965 mulgz 18976 subg0 19006 subg0cl 19008 issubg4 19019 0subgOLD 19026 nmzsubg 19039 eqgid 19054 qusgrp 19059 qus0 19062 ghmid 19092 ghmpreima 19108 ghmf1 19115 gafo 19154 gaid 19157 gass 19159 gaorber 19166 gastacl 19167 lactghmga 19267 cayleylem2 19275 symgsssg 19329 symgfisg 19330 od1 19421 gexdvds 19446 sylow1lem2 19461 sylow3lem1 19489 lsmdisj2 19544 0frgp 19641 odadd1 19710 torsubg 19716 oddvdssubg 19717 0cyg 19755 prmcyg 19756 telgsums 19855 dprdfadd 19884 dprdz 19894 pgpfac1lem3a 19940 ablsimpgprmd 19979 ring0cl 20077 ringlz 20100 ringrz 20101 f1ghm0to0 20271 kerf1ghm 20274 isdrng2 20321 srng0 20460 lmod0vcl 20493 islmhm2 20641 isdomn4 20910 frgpcyg 21120 ip0l 21180 ocvlss 21216 ascl0 21429 psr0cl 21504 mplsubglem 21549 mhp0cl 21680 mhpaddcl 21685 evl1gsumd 21867 grpvlinv 21888 matinvgcell 21928 mat0dim0 21960 mdetdiag 22092 mdetuni0 22114 chpdmatlem2 22332 chp0mat 22339 istgp2 23586 cldsubg 23606 tgpconncompeqg 23607 tgpconncomp 23608 snclseqg 23611 tgphaus 23612 tgpt1 23613 qustgphaus 23618 tgptsmscls 23645 nrmmetd 24074 nmfval2 24091 nmval2 24092 nmf2 24093 ngpds3 24108 nmge0 24117 nmeq0 24118 nminv 24121 nmmtri 24122 nmrtri 24124 nm0 24129 tngnm 24159 idnghm 24251 nmcn 24351 clmvz 24618 nmoleub2lem2 24623 nglmle 24810 mdeg0 25579 dchrinv 26753 dchr1re 26755 dchrpt 26759 dchrsum2 26760 dchrhash 26763 rpvmasumlem 26979 rpvmasum2 27004 dchrisum0re 27005 ogrpinv0lt 32227 ogrpinvlt 32228 isarchi3 32320 archirng 32321 archirngz 32322 archiabllem1b 32325 rmfsupp2 32375 orngsqr 32410 ornglmulle 32411 orngrmulle 32412 ornglmullt 32413 orngrmullt 32414 orngmullt 32415 ofldchr 32420 isarchiofld 32423 qusker 32452 eqg0el 32461 grplsm0l 32501 qus0g 32506 nsgqus0 32509 nsgmgclem 32510 ghmqusker 32520 fedgmullem1 32702 qqh0 32952 sconnpi1 34218 lfl0f 37927 lkrlss 37953 lshpkrlem1 37968 lkrin 38022 dvhgrp 39966 fsuppind 41159 fsuppssind 41162 mhpind 41163 rng0cl 46648 rnglz 46650 rngrz 46651 zrrnghm 46701 rnglidl0 46734 evl1at0 47025 |
Copyright terms: Public domain | W3C validator |