| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18872 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | mndidcl 18676 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 0gc0g 17402 Mndcmnd 18661 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: grpbn0 18898 grprcan 18905 grpid 18907 isgrpid2 18908 grprinv 18922 grpidinv 18930 grpinvid 18931 grpidrcan 18935 grpidlcan 18936 grpidssd 18948 grpinvval2 18955 grpsubid1 18957 imasgrp 18988 mulgcl 19023 mulgz 19034 subg0 19064 subg0cl 19066 issubg4 19077 0subgOLD 19084 nmzsubg 19097 eqgid 19112 eqg0el 19115 qusgrp 19118 qus0 19121 ghmid 19154 ghmpreima 19170 f1ghm0to0 19177 kerf1ghm 19179 ghmqusker 19219 gafo 19228 gaid 19231 gass 19233 gaorber 19240 gastacl 19241 lactghmga 19335 cayleylem2 19343 symgsssg 19397 symgfisg 19398 od1 19489 gexdvds 19514 sylow1lem2 19529 sylow3lem1 19557 lsmdisj2 19612 0frgp 19709 odadd1 19778 torsubg 19784 oddvdssubg 19785 0cyg 19823 prmcyg 19824 telgsums 19923 dprdfadd 19952 dprdz 19962 pgpfac1lem3a 20008 ablsimpgprmd 20047 rng0cl 20072 rnglz 20074 rngrz 20075 ring0cl 20176 zrrnghm 20445 isdomn4 20625 isdrng2 20652 srng0 20763 lmod0vcl 20797 islmhm2 20945 rnglidl0 21139 frgpcyg 21483 ip0l 21545 ocvlss 21581 ascl0 21793 psr0cl 21861 mplsubglem 21908 mhp0cl 22033 mhpaddcl 22038 evl1gsumd 22244 grpvlinv 22285 matinvgcell 22322 mat0dim0 22354 mdetdiag 22486 mdetuni0 22508 chpdmatlem2 22726 chp0mat 22733 istgp2 23978 cldsubg 23998 tgpconncompeqg 23999 tgpconncomp 24000 snclseqg 24003 tgphaus 24004 tgpt1 24005 qustgphaus 24010 tgptsmscls 24037 nrmmetd 24462 nmfval2 24479 nmval2 24480 nmf2 24481 ngpds3 24496 nmge0 24505 nmeq0 24506 nminv 24509 nmmtri 24510 nmrtri 24512 nm0 24517 tngnm 24539 idnghm 24631 nmcn 24733 clmvz 25011 nmoleub2lem2 25016 nglmle 25202 mdeg0 25975 dchrinv 27172 dchr1re 27174 dchrpt 27178 dchrsum2 27179 dchrhash 27182 rpvmasumlem 27398 rpvmasum2 27423 dchrisum0re 27424 ogrpinv0lt 33036 ogrpinvlt 33037 conjga 33127 fxpsubm 33129 isarchi3 33141 archirng 33142 archirngz 33143 archiabllem1b 33146 rmfsupp2 33189 erler 33216 rlocaddval 33219 rlocmulval 33220 rloc0g 33222 fracfld 33258 orngsqr 33282 ornglmulle 33283 orngrmulle 33284 ornglmullt 33285 orngrmullt 33286 orngmullt 33287 ofldchr 33292 isarchiofld 33295 qusker 33320 grplsm0l 33374 qus0g 33378 nsgqus0 33381 nsgmgclem 33382 fedgmullem1 33625 irredminply 33706 rtelextdg2lem 33716 qqh0 33974 sconnpi1 35226 lfl0f 39062 lkrlss 39088 lshpkrlem1 39103 lkrin 39157 dvhgrp 41101 primrootscoprmpow 42087 aks5lem7 42188 fsuppind 42578 fsuppssind 42581 mhpind 42582 evl1at0 48380 |
| Copyright terms: Public domain | W3C validator |