| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18845 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | mndidcl 18649 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 Basecbs 17112 0gc0g 17335 Mndcmnd 18634 Grpcgrp 18838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-riota 7298 df-ov 7344 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 |
| This theorem is referenced by: grpbn0 18871 grprcan 18878 grpid 18880 isgrpid2 18881 grprinv 18895 grpidinv 18903 grpinvid 18904 grpidrcan 18908 grpidlcan 18909 grpidssd 18921 grpinvval2 18928 grpsubid1 18930 imasgrp 18961 mulgcl 18996 mulgz 19007 subg0 19037 subg0cl 19039 issubg4 19050 0subgOLD 19057 nmzsubg 19070 eqgid 19085 eqg0el 19088 qusgrp 19091 qus0 19094 ghmid 19127 ghmpreima 19143 f1ghm0to0 19150 kerf1ghm 19152 ghmqusker 19192 gafo 19201 gaid 19204 gass 19206 gaorber 19213 gastacl 19214 lactghmga 19310 cayleylem2 19318 symgsssg 19372 symgfisg 19373 od1 19464 gexdvds 19489 sylow1lem2 19504 sylow3lem1 19532 lsmdisj2 19587 0frgp 19684 odadd1 19753 torsubg 19759 oddvdssubg 19760 0cyg 19798 prmcyg 19799 telgsums 19898 dprdfadd 19927 dprdz 19937 pgpfac1lem3a 19983 ablsimpgprmd 20022 ogrpinv0lt 20048 ogrpinvlt 20049 rng0cl 20074 rnglz 20076 rngrz 20077 ring0cl 20178 zrrnghm 20444 isdomn4 20624 isdrng2 20651 srng0 20762 orngsqr 20774 ornglmulle 20775 orngrmulle 20776 ornglmullt 20777 orngrmullt 20778 orngmullt 20779 lmod0vcl 20817 islmhm2 20965 rnglidl0 21159 frgpcyg 21503 ofldchr 21506 ip0l 21566 ocvlss 21602 ascl0 21814 psr0cl 21882 mplsubglem 21929 mhp0cl 22054 mhpaddcl 22059 evl1gsumd 22265 grpvlinv 22306 matinvgcell 22343 mat0dim0 22375 mdetdiag 22507 mdetuni0 22529 chpdmatlem2 22747 chp0mat 22754 istgp2 23999 cldsubg 24019 tgpconncompeqg 24020 tgpconncomp 24021 snclseqg 24024 tgphaus 24025 tgpt1 24026 qustgphaus 24031 tgptsmscls 24058 nrmmetd 24482 nmfval2 24499 nmval2 24500 nmf2 24501 ngpds3 24516 nmge0 24525 nmeq0 24526 nminv 24529 nmmtri 24530 nmrtri 24532 nm0 24537 tngnm 24559 idnghm 24651 nmcn 24753 clmvz 25031 nmoleub2lem2 25036 nglmle 25222 mdeg0 25995 dchrinv 27192 dchr1re 27194 dchrpt 27198 dchrsum2 27199 dchrhash 27202 rpvmasumlem 27418 rpvmasum2 27443 dchrisum0re 27444 conjga 33129 fxpsubm 33131 fxpsubg 33132 fxpsubrg 33133 isarchi3 33146 archirng 33147 archirngz 33148 archiabllem1b 33151 isarchiofld 33158 rmfsupp2 33195 erler 33222 rlocaddval 33225 rlocmulval 33226 rloc0g 33228 fracfld 33264 qusker 33304 grplsm0l 33358 qus0g 33362 nsgqus0 33365 nsgmgclem 33366 mplvrpmga 33565 mplvrpmmhm 33566 fedgmullem1 33632 irredminply 33719 rtelextdg2lem 33729 qqh0 33987 sconnpi1 35251 lfl0f 39087 lkrlss 39113 lshpkrlem1 39128 lkrin 39182 dvhgrp 41125 primrootscoprmpow 42111 aks5lem7 42212 fsuppind 42602 fsuppssind 42605 mhpind 42606 evl1at0 48402 |
| Copyright terms: Public domain | W3C validator |