![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18980 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18787 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 0gc0g 17499 Mndcmnd 18772 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grpbn0 19006 grprcan 19013 grpid 19015 isgrpid2 19016 grprinv 19030 grpidinv 19038 grpinvid 19039 grpidrcan 19043 grpidlcan 19044 grpidssd 19056 grpinvval2 19063 grpsubid1 19065 imasgrp 19096 mulgcl 19131 mulgz 19142 subg0 19172 subg0cl 19174 issubg4 19185 0subgOLD 19192 nmzsubg 19205 eqgid 19220 eqg0el 19223 qusgrp 19226 qus0 19229 ghmid 19262 ghmpreima 19278 f1ghm0to0 19285 kerf1ghm 19287 ghmqusker 19327 gafo 19336 gaid 19339 gass 19341 gaorber 19348 gastacl 19349 lactghmga 19447 cayleylem2 19455 symgsssg 19509 symgfisg 19510 od1 19601 gexdvds 19626 sylow1lem2 19641 sylow3lem1 19669 lsmdisj2 19724 0frgp 19821 odadd1 19890 torsubg 19896 oddvdssubg 19897 0cyg 19935 prmcyg 19936 telgsums 20035 dprdfadd 20064 dprdz 20074 pgpfac1lem3a 20120 ablsimpgprmd 20159 rng0cl 20190 rnglz 20192 rngrz 20193 ring0cl 20290 zrrnghm 20562 isdomn4 20738 isdrng2 20765 srng0 20877 lmod0vcl 20911 islmhm2 21060 rnglidl0 21262 frgpcyg 21615 ip0l 21677 ocvlss 21713 ascl0 21927 psr0cl 21995 mplsubglem 22042 mhp0cl 22173 mhpaddcl 22178 evl1gsumd 22382 grpvlinv 22423 matinvgcell 22462 mat0dim0 22494 mdetdiag 22626 mdetuni0 22648 chpdmatlem2 22866 chp0mat 22873 istgp2 24120 cldsubg 24140 tgpconncompeqg 24141 tgpconncomp 24142 snclseqg 24145 tgphaus 24146 tgpt1 24147 qustgphaus 24152 tgptsmscls 24179 nrmmetd 24608 nmfval2 24625 nmval2 24626 nmf2 24627 ngpds3 24642 nmge0 24651 nmeq0 24652 nminv 24655 nmmtri 24656 nmrtri 24658 nm0 24663 tngnm 24693 idnghm 24785 nmcn 24885 clmvz 25163 nmoleub2lem2 25168 nglmle 25355 mdeg0 26129 dchrinv 27323 dchr1re 27325 dchrpt 27329 dchrsum2 27330 dchrhash 27333 rpvmasumlem 27549 rpvmasum2 27574 dchrisum0re 27575 ogrpinv0lt 33072 ogrpinvlt 33073 isarchi3 33167 archirng 33168 archirngz 33169 archiabllem1b 33172 rmfsupp2 33218 erler 33237 rlocaddval 33240 rlocmulval 33241 rloc0g 33243 fracfld 33275 orngsqr 33299 ornglmulle 33300 orngrmulle 33301 ornglmullt 33302 orngrmullt 33303 orngmullt 33304 ofldchr 33309 isarchiofld 33312 qusker 33342 grplsm0l 33396 qus0g 33400 nsgqus0 33403 nsgmgclem 33404 fedgmullem1 33642 irredminply 33707 rtelextdg2lem 33717 qqh0 33930 sconnpi1 35207 lfl0f 39025 lkrlss 39051 lshpkrlem1 39066 lkrin 39120 dvhgrp 41064 primrootscoprmpow 42056 aks5lem7 42157 fsuppind 42545 fsuppssind 42548 mhpind 42549 evl1at0 48120 |
Copyright terms: Public domain | W3C validator |