![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18904 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18716 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 Basecbs 17187 0gc0g 17428 Mndcmnd 18701 Grpcgrp 18897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-riota 7382 df-ov 7429 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 |
This theorem is referenced by: grpbn0 18930 grprcan 18937 grpid 18939 isgrpid2 18940 grprinv 18954 grpidinv 18962 grpinvid 18963 grpidrcan 18967 grpidlcan 18968 grpidssd 18979 grpinvval2 18986 grpsubid1 18988 imasgrp 19019 mulgcl 19053 mulgz 19064 subg0 19094 subg0cl 19096 issubg4 19107 0subgOLD 19114 nmzsubg 19127 eqgid 19142 eqg0el 19145 qusgrp 19148 qus0 19151 ghmid 19183 ghmpreima 19199 f1ghm0to0 19206 kerf1ghm 19208 ghmqusker 19245 gafo 19254 gaid 19257 gass 19259 gaorber 19266 gastacl 19267 lactghmga 19367 cayleylem2 19375 symgsssg 19429 symgfisg 19430 od1 19521 gexdvds 19546 sylow1lem2 19561 sylow3lem1 19589 lsmdisj2 19644 0frgp 19741 odadd1 19810 torsubg 19816 oddvdssubg 19817 0cyg 19855 prmcyg 19856 telgsums 19955 dprdfadd 19984 dprdz 19994 pgpfac1lem3a 20040 ablsimpgprmd 20079 rng0cl 20110 rnglz 20112 rngrz 20113 ring0cl 20210 zrrnghm 20480 isdrng2 20645 srng0 20747 lmod0vcl 20781 islmhm2 20930 rnglidl0 21132 isdomn4 21257 frgpcyg 21514 ip0l 21575 ocvlss 21611 ascl0 21824 psr0cl 21902 mplsubglem 21948 mhp0cl 22077 mhpaddcl 22082 evl1gsumd 22283 grpvlinv 22317 matinvgcell 22357 mat0dim0 22389 mdetdiag 22521 mdetuni0 22543 chpdmatlem2 22761 chp0mat 22768 istgp2 24015 cldsubg 24035 tgpconncompeqg 24036 tgpconncomp 24037 snclseqg 24040 tgphaus 24041 tgpt1 24042 qustgphaus 24047 tgptsmscls 24074 nrmmetd 24503 nmfval2 24520 nmval2 24521 nmf2 24522 ngpds3 24537 nmge0 24546 nmeq0 24547 nminv 24550 nmmtri 24551 nmrtri 24553 nm0 24558 tngnm 24588 idnghm 24680 nmcn 24780 clmvz 25058 nmoleub2lem2 25063 nglmle 25250 mdeg0 26026 dchrinv 27214 dchr1re 27216 dchrpt 27220 dchrsum2 27221 dchrhash 27224 rpvmasumlem 27440 rpvmasum2 27465 dchrisum0re 27466 ogrpinv0lt 32823 ogrpinvlt 32824 isarchi3 32916 archirng 32917 archirngz 32918 archiabllem1b 32921 rmfsupp2 32966 erler 33004 rlocaddval 33007 rlocmulval 33008 rloc0g 33010 fracfld 33019 orngsqr 33043 ornglmulle 33044 orngrmulle 33045 ornglmullt 33046 orngrmullt 33047 orngmullt 33048 ofldchr 33053 isarchiofld 33056 qusker 33085 grplsm0l 33137 qus0g 33142 nsgqus0 33145 nsgmgclem 33146 fedgmullem1 33360 irredminply 33417 qqh0 33618 sconnpi1 34882 lfl0f 38573 lkrlss 38599 lshpkrlem1 38614 lkrin 38668 dvhgrp 40612 primrootscoprmpow 41602 fsuppind 41854 fsuppssind 41857 mhpind 41858 evl1at0 47537 |
Copyright terms: Public domain | W3C validator |