| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18837 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | mndidcl 18641 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Basecbs 17138 0gc0g 17361 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: grpbn0 18863 grprcan 18870 grpid 18872 isgrpid2 18873 grprinv 18887 grpidinv 18895 grpinvid 18896 grpidrcan 18900 grpidlcan 18901 grpidssd 18913 grpinvval2 18920 grpsubid1 18922 imasgrp 18953 mulgcl 18988 mulgz 18999 subg0 19029 subg0cl 19031 issubg4 19042 0subgOLD 19049 nmzsubg 19062 eqgid 19077 eqg0el 19080 qusgrp 19083 qus0 19086 ghmid 19119 ghmpreima 19135 f1ghm0to0 19142 kerf1ghm 19144 ghmqusker 19184 gafo 19193 gaid 19196 gass 19198 gaorber 19205 gastacl 19206 lactghmga 19302 cayleylem2 19310 symgsssg 19364 symgfisg 19365 od1 19456 gexdvds 19481 sylow1lem2 19496 sylow3lem1 19524 lsmdisj2 19579 0frgp 19676 odadd1 19745 torsubg 19751 oddvdssubg 19752 0cyg 19790 prmcyg 19791 telgsums 19890 dprdfadd 19919 dprdz 19929 pgpfac1lem3a 19975 ablsimpgprmd 20014 ogrpinv0lt 20040 ogrpinvlt 20041 rng0cl 20066 rnglz 20068 rngrz 20069 ring0cl 20170 zrrnghm 20439 isdomn4 20619 isdrng2 20646 srng0 20757 orngsqr 20769 ornglmulle 20770 orngrmulle 20771 ornglmullt 20772 orngrmullt 20773 orngmullt 20774 lmod0vcl 20812 islmhm2 20960 rnglidl0 21154 frgpcyg 21498 ofldchr 21501 ip0l 21561 ocvlss 21597 ascl0 21809 psr0cl 21877 mplsubglem 21924 mhp0cl 22049 mhpaddcl 22054 evl1gsumd 22260 grpvlinv 22301 matinvgcell 22338 mat0dim0 22370 mdetdiag 22502 mdetuni0 22524 chpdmatlem2 22742 chp0mat 22749 istgp2 23994 cldsubg 24014 tgpconncompeqg 24015 tgpconncomp 24016 snclseqg 24019 tgphaus 24020 tgpt1 24021 qustgphaus 24026 tgptsmscls 24053 nrmmetd 24478 nmfval2 24495 nmval2 24496 nmf2 24497 ngpds3 24512 nmge0 24521 nmeq0 24522 nminv 24525 nmmtri 24526 nmrtri 24528 nm0 24533 tngnm 24555 idnghm 24647 nmcn 24749 clmvz 25027 nmoleub2lem2 25032 nglmle 25218 mdeg0 25991 dchrinv 27188 dchr1re 27190 dchrpt 27194 dchrsum2 27195 dchrhash 27198 rpvmasumlem 27414 rpvmasum2 27439 dchrisum0re 27440 conjga 33125 fxpsubm 33127 isarchi3 33139 archirng 33140 archirngz 33141 archiabllem1b 33144 isarchiofld 33151 rmfsupp2 33188 erler 33215 rlocaddval 33218 rlocmulval 33219 rloc0g 33221 fracfld 33257 qusker 33296 grplsm0l 33350 qus0g 33354 nsgqus0 33357 nsgmgclem 33358 fedgmullem1 33601 irredminply 33682 rtelextdg2lem 33692 qqh0 33950 sconnpi1 35211 lfl0f 39047 lkrlss 39073 lshpkrlem1 39088 lkrin 39142 dvhgrp 41086 primrootscoprmpow 42072 aks5lem7 42173 fsuppind 42563 fsuppssind 42566 mhpind 42567 evl1at0 48364 |
| Copyright terms: Public domain | W3C validator |