| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18863 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | mndidcl 18667 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 Basecbs 17130 0gc0g 17353 Mndcmnd 18652 Grpcgrp 18856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6445 df-fun 6491 df-fv 6497 df-riota 7312 df-ov 7358 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 |
| This theorem is referenced by: grpbn0 18889 grprcan 18896 grpid 18898 isgrpid2 18899 grprinv 18913 grpidinv 18921 grpinvid 18922 grpidrcan 18926 grpidlcan 18927 grpidssd 18939 grpinvval2 18946 grpsubid1 18948 imasgrp 18979 mulgcl 19014 mulgz 19025 subg0 19055 subg0cl 19057 issubg4 19068 nmzsubg 19087 eqgid 19102 eqg0el 19105 qusgrp 19108 qus0 19111 ghmid 19144 ghmpreima 19160 f1ghm0to0 19167 kerf1ghm 19169 ghmqusker 19209 gafo 19218 gaid 19221 gass 19223 gaorber 19230 gastacl 19231 lactghmga 19327 cayleylem2 19335 symgsssg 19389 symgfisg 19390 od1 19481 gexdvds 19506 sylow1lem2 19521 sylow3lem1 19549 lsmdisj2 19604 0frgp 19701 odadd1 19770 torsubg 19776 oddvdssubg 19777 0cyg 19815 prmcyg 19816 telgsums 19915 dprdfadd 19944 dprdz 19954 pgpfac1lem3a 20000 ablsimpgprmd 20039 ogrpinv0lt 20065 ogrpinvlt 20066 rng0cl 20091 rnglz 20093 rngrz 20094 ring0cl 20195 zrrnghm 20461 isdomn4 20641 isdrng2 20668 srng0 20779 orngsqr 20791 ornglmulle 20792 orngrmulle 20793 ornglmullt 20794 orngrmullt 20795 orngmullt 20796 lmod0vcl 20834 islmhm2 20982 rnglidl0 21176 frgpcyg 21520 ofldchr 21523 ip0l 21583 ocvlss 21619 ascl0 21831 psr0cl 21899 mplsubglem 21946 mhp0cl 22071 mhpaddcl 22076 evl1gsumd 22282 grpvlinv 22323 matinvgcell 22360 mat0dim0 22392 mdetdiag 22524 mdetuni0 22546 chpdmatlem2 22764 chp0mat 22771 istgp2 24016 cldsubg 24036 tgpconncompeqg 24037 tgpconncomp 24038 snclseqg 24041 tgphaus 24042 tgpt1 24043 qustgphaus 24048 tgptsmscls 24075 nrmmetd 24499 nmfval2 24516 nmval2 24517 nmf2 24518 ngpds3 24533 nmge0 24542 nmeq0 24543 nminv 24546 nmmtri 24547 nmrtri 24549 nm0 24554 tngnm 24576 idnghm 24668 nmcn 24770 clmvz 25048 nmoleub2lem2 25053 nglmle 25239 mdeg0 26012 dchrinv 27209 dchr1re 27211 dchrpt 27215 dchrsum2 27216 dchrhash 27219 rpvmasumlem 27435 rpvmasum2 27460 dchrisum0re 27461 conjga 33150 fxpsubm 33152 fxpsubg 33153 fxpsubrg 33154 isarchi3 33167 archirng 33168 archirngz 33169 archiabllem1b 33172 isarchiofld 33179 rmfsupp2 33216 erler 33243 rlocaddval 33246 rlocmulval 33247 rloc0g 33249 fracfld 33285 qusker 33325 grplsm0l 33379 qus0g 33383 nsgqus0 33386 nsgmgclem 33387 mplvrpmga 33586 mplvrpmmhm 33587 fedgmullem1 33653 irredminply 33740 rtelextdg2lem 33750 qqh0 34008 sconnpi1 35294 lfl0f 39178 lkrlss 39204 lshpkrlem1 39219 lkrin 39273 dvhgrp 41216 primrootscoprmpow 42202 aks5lem7 42303 fsuppind 42698 fsuppssind 42701 mhpind 42702 evl1at0 48506 |
| Copyright terms: Public domain | W3C validator |