![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18862 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18674 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ‘cfv 6542 Basecbs 17148 0gc0g 17389 Mndcmnd 18659 Grpcgrp 18855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-riota 7367 df-ov 7414 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 |
This theorem is referenced by: grpbn0 18887 grprcan 18894 grpid 18896 isgrpid2 18897 grprinv 18911 grpidinv 18919 grpinvid 18920 grpidrcan 18924 grpidlcan 18925 grpidssd 18935 grpinvval2 18942 grpsubid1 18944 imasgrp 18975 mulgcl 19007 mulgz 19018 subg0 19048 subg0cl 19050 issubg4 19061 0subgOLD 19068 nmzsubg 19081 eqgid 19096 qusgrp 19101 qus0 19104 ghmid 19136 ghmpreima 19152 f1ghm0to0 19159 kerf1ghm 19161 gafo 19201 gaid 19204 gass 19206 gaorber 19213 gastacl 19214 lactghmga 19314 cayleylem2 19322 symgsssg 19376 symgfisg 19377 od1 19468 gexdvds 19493 sylow1lem2 19508 sylow3lem1 19536 lsmdisj2 19591 0frgp 19688 odadd1 19757 torsubg 19763 oddvdssubg 19764 0cyg 19802 prmcyg 19803 telgsums 19902 dprdfadd 19931 dprdz 19941 pgpfac1lem3a 19987 ablsimpgprmd 20026 rng0cl 20057 rnglz 20059 rngrz 20060 ring0cl 20155 zrrnghm 20425 isdrng2 20514 srng0 20611 lmod0vcl 20645 islmhm2 20793 rnglidl0 21032 isdomn4 21118 frgpcyg 21348 ip0l 21408 ocvlss 21444 ascl0 21657 psr0cl 21732 mplsubglem 21777 mhp0cl 21908 mhpaddcl 21913 evl1gsumd 22096 grpvlinv 22117 matinvgcell 22157 mat0dim0 22189 mdetdiag 22321 mdetuni0 22343 chpdmatlem2 22561 chp0mat 22568 istgp2 23815 cldsubg 23835 tgpconncompeqg 23836 tgpconncomp 23837 snclseqg 23840 tgphaus 23841 tgpt1 23842 qustgphaus 23847 tgptsmscls 23874 nrmmetd 24303 nmfval2 24320 nmval2 24321 nmf2 24322 ngpds3 24337 nmge0 24346 nmeq0 24347 nminv 24350 nmmtri 24351 nmrtri 24353 nm0 24358 tngnm 24388 idnghm 24480 nmcn 24580 clmvz 24858 nmoleub2lem2 24863 nglmle 25050 mdeg0 25823 dchrinv 27000 dchr1re 27002 dchrpt 27006 dchrsum2 27007 dchrhash 27010 rpvmasumlem 27226 rpvmasum2 27251 dchrisum0re 27252 ogrpinv0lt 32510 ogrpinvlt 32511 isarchi3 32603 archirng 32604 archirngz 32605 archiabllem1b 32608 rmfsupp2 32657 orngsqr 32692 ornglmulle 32693 orngrmulle 32694 ornglmullt 32695 orngrmullt 32696 orngmullt 32697 ofldchr 32702 isarchiofld 32705 qusker 32734 eqg0el 32747 grplsm0l 32787 qus0g 32792 nsgqus0 32795 nsgmgclem 32796 ghmqusker 32806 fedgmullem1 33002 qqh0 33262 sconnpi1 34528 lfl0f 38242 lkrlss 38268 lshpkrlem1 38283 lkrin 38337 dvhgrp 40281 fsuppind 41464 fsuppssind 41467 mhpind 41468 evl1at0 47159 |
Copyright terms: Public domain | W3C validator |