Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18499 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18315 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 0gc0g 17067 Mndcmnd 18300 Grpcgrp 18492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 |
This theorem is referenced by: grpbn0 18523 grprcan 18528 grpid 18530 isgrpid2 18531 grprinv 18544 grpidinv 18550 grpinvid 18551 grpidrcan 18555 grpidlcan 18556 grpidssd 18566 grpinvval2 18573 grpsubid1 18575 imasgrp 18606 mulgcl 18636 mulgz 18646 subg0 18676 subg0cl 18678 issubg4 18689 0subg 18695 nmzsubg 18708 eqgid 18723 qusgrp 18726 qus0 18729 ghmid 18755 ghmpreima 18771 ghmf1 18778 gafo 18817 gaid 18820 gass 18822 gaorber 18829 gastacl 18830 lactghmga 18928 cayleylem2 18936 symgsssg 18990 symgfisg 18991 od1 19081 gexdvds 19104 sylow1lem2 19119 sylow3lem1 19147 lsmdisj2 19203 0frgp 19300 odadd1 19364 torsubg 19370 oddvdssubg 19371 0cyg 19409 prmcyg 19410 telgsums 19509 dprdfadd 19538 dprdz 19548 pgpfac1lem3a 19594 ablsimpgprmd 19633 ring0cl 19723 ringlz 19741 ringrz 19742 f1ghm0to0 19899 kerf1ghm 19902 isdrng2 19916 srng0 20035 lmod0vcl 20067 islmhm2 20215 frgpcyg 20693 ip0l 20753 ocvlss 20789 ascl0 20998 psr0cl 21073 mplsubglem 21115 mhp0cl 21246 mhpaddcl 21251 evl1gsumd 21433 grpvlinv 21454 matinvgcell 21492 mat0dim0 21524 mdetdiag 21656 mdetuni0 21678 chpdmatlem2 21896 chp0mat 21903 istgp2 23150 cldsubg 23170 tgpconncompeqg 23171 tgpconncomp 23172 snclseqg 23175 tgphaus 23176 tgpt1 23177 qustgphaus 23182 tgptsmscls 23209 nrmmetd 23636 nmfval2 23653 nmval2 23654 nmf2 23655 ngpds3 23670 nmge0 23679 nmeq0 23680 nminv 23683 nmmtri 23684 nmrtri 23686 nm0 23691 tngnm 23721 idnghm 23813 nmcn 23913 clmvz 24180 nmoleub2lem2 24185 nglmle 24371 mdeg0 25140 dchrinv 26314 dchr1re 26316 dchrpt 26320 dchrsum2 26321 dchrhash 26324 rpvmasumlem 26540 rpvmasum2 26565 dchrisum0re 26566 ogrpinv0lt 31250 ogrpinvlt 31251 isarchi3 31343 archirng 31344 archirngz 31345 archiabllem1b 31348 rmfsupp2 31394 orngsqr 31405 ornglmulle 31406 orngrmulle 31407 ornglmullt 31408 orngrmullt 31409 orngmullt 31410 ofldchr 31415 isarchiofld 31418 qusker 31451 eqg0el 31459 grplsm0l 31493 nsgqus0 31497 nsgmgclem 31498 fedgmullem1 31612 qqh0 31834 sconnpi1 33101 lfl0f 37010 lkrlss 37036 lshpkrlem1 37051 lkrin 37105 dvhgrp 39048 isdomn4 40100 fsuppind 40202 fsuppssind 40205 mhpind 40206 rnglz 45330 zrrnghm 45363 evl1at0 45620 |
Copyright terms: Public domain | W3C validator |