| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18879 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 2, 3 | mndidcl 18683 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Basecbs 17186 0gc0g 17409 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: grpbn0 18905 grprcan 18912 grpid 18914 isgrpid2 18915 grprinv 18929 grpidinv 18937 grpinvid 18938 grpidrcan 18942 grpidlcan 18943 grpidssd 18955 grpinvval2 18962 grpsubid1 18964 imasgrp 18995 mulgcl 19030 mulgz 19041 subg0 19071 subg0cl 19073 issubg4 19084 0subgOLD 19091 nmzsubg 19104 eqgid 19119 eqg0el 19122 qusgrp 19125 qus0 19128 ghmid 19161 ghmpreima 19177 f1ghm0to0 19184 kerf1ghm 19186 ghmqusker 19226 gafo 19235 gaid 19238 gass 19240 gaorber 19247 gastacl 19248 lactghmga 19342 cayleylem2 19350 symgsssg 19404 symgfisg 19405 od1 19496 gexdvds 19521 sylow1lem2 19536 sylow3lem1 19564 lsmdisj2 19619 0frgp 19716 odadd1 19785 torsubg 19791 oddvdssubg 19792 0cyg 19830 prmcyg 19831 telgsums 19930 dprdfadd 19959 dprdz 19969 pgpfac1lem3a 20015 ablsimpgprmd 20054 rng0cl 20079 rnglz 20081 rngrz 20082 ring0cl 20183 zrrnghm 20452 isdomn4 20632 isdrng2 20659 srng0 20770 lmod0vcl 20804 islmhm2 20952 rnglidl0 21146 frgpcyg 21490 ip0l 21552 ocvlss 21588 ascl0 21800 psr0cl 21868 mplsubglem 21915 mhp0cl 22040 mhpaddcl 22045 evl1gsumd 22251 grpvlinv 22292 matinvgcell 22329 mat0dim0 22361 mdetdiag 22493 mdetuni0 22515 chpdmatlem2 22733 chp0mat 22740 istgp2 23985 cldsubg 24005 tgpconncompeqg 24006 tgpconncomp 24007 snclseqg 24010 tgphaus 24011 tgpt1 24012 qustgphaus 24017 tgptsmscls 24044 nrmmetd 24469 nmfval2 24486 nmval2 24487 nmf2 24488 ngpds3 24503 nmge0 24512 nmeq0 24513 nminv 24516 nmmtri 24517 nmrtri 24519 nm0 24524 tngnm 24546 idnghm 24638 nmcn 24740 clmvz 25018 nmoleub2lem2 25023 nglmle 25209 mdeg0 25982 dchrinv 27179 dchr1re 27181 dchrpt 27185 dchrsum2 27186 dchrhash 27189 rpvmasumlem 27405 rpvmasum2 27430 dchrisum0re 27431 ogrpinv0lt 33043 ogrpinvlt 33044 conjga 33134 fxpsubm 33136 isarchi3 33148 archirng 33149 archirngz 33150 archiabllem1b 33153 rmfsupp2 33196 erler 33223 rlocaddval 33226 rlocmulval 33227 rloc0g 33229 fracfld 33265 orngsqr 33289 ornglmulle 33290 orngrmulle 33291 ornglmullt 33292 orngrmullt 33293 orngmullt 33294 ofldchr 33299 isarchiofld 33302 qusker 33327 grplsm0l 33381 qus0g 33385 nsgqus0 33388 nsgmgclem 33389 fedgmullem1 33632 irredminply 33713 rtelextdg2lem 33723 qqh0 33981 sconnpi1 35233 lfl0f 39069 lkrlss 39095 lshpkrlem1 39110 lkrin 39164 dvhgrp 41108 primrootscoprmpow 42094 aks5lem7 42195 fsuppind 42585 fsuppssind 42588 mhpind 42589 evl1at0 48384 |
| Copyright terms: Public domain | W3C validator |