![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18970 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18774 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 Basecbs 17244 0gc0g 17485 Mndcmnd 18759 Grpcgrp 18963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-riota 7387 df-ov 7433 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 |
This theorem is referenced by: grpbn0 18996 grprcan 19003 grpid 19005 isgrpid2 19006 grprinv 19020 grpidinv 19028 grpinvid 19029 grpidrcan 19033 grpidlcan 19034 grpidssd 19046 grpinvval2 19053 grpsubid1 19055 imasgrp 19086 mulgcl 19121 mulgz 19132 subg0 19162 subg0cl 19164 issubg4 19175 0subgOLD 19182 nmzsubg 19195 eqgid 19210 eqg0el 19213 qusgrp 19216 qus0 19219 ghmid 19252 ghmpreima 19268 f1ghm0to0 19275 kerf1ghm 19277 ghmqusker 19317 gafo 19326 gaid 19329 gass 19331 gaorber 19338 gastacl 19339 lactghmga 19437 cayleylem2 19445 symgsssg 19499 symgfisg 19500 od1 19591 gexdvds 19616 sylow1lem2 19631 sylow3lem1 19659 lsmdisj2 19714 0frgp 19811 odadd1 19880 torsubg 19886 oddvdssubg 19887 0cyg 19925 prmcyg 19926 telgsums 20025 dprdfadd 20054 dprdz 20064 pgpfac1lem3a 20110 ablsimpgprmd 20149 rng0cl 20180 rnglz 20182 rngrz 20183 ring0cl 20280 zrrnghm 20552 isdomn4 20732 isdrng2 20759 srng0 20871 lmod0vcl 20905 islmhm2 21054 rnglidl0 21256 frgpcyg 21609 ip0l 21671 ocvlss 21707 ascl0 21921 psr0cl 21989 mplsubglem 22036 mhp0cl 22167 mhpaddcl 22172 evl1gsumd 22376 grpvlinv 22417 matinvgcell 22456 mat0dim0 22488 mdetdiag 22620 mdetuni0 22642 chpdmatlem2 22860 chp0mat 22867 istgp2 24114 cldsubg 24134 tgpconncompeqg 24135 tgpconncomp 24136 snclseqg 24139 tgphaus 24140 tgpt1 24141 qustgphaus 24146 tgptsmscls 24173 nrmmetd 24602 nmfval2 24619 nmval2 24620 nmf2 24621 ngpds3 24636 nmge0 24645 nmeq0 24646 nminv 24649 nmmtri 24650 nmrtri 24652 nm0 24657 tngnm 24687 idnghm 24779 nmcn 24879 clmvz 25157 nmoleub2lem2 25162 nglmle 25349 mdeg0 26123 dchrinv 27319 dchr1re 27321 dchrpt 27325 dchrsum2 27326 dchrhash 27329 rpvmasumlem 27545 rpvmasum2 27570 dchrisum0re 27571 ogrpinv0lt 33081 ogrpinvlt 33082 isarchi3 33176 archirng 33177 archirngz 33178 archiabllem1b 33181 rmfsupp2 33227 erler 33251 rlocaddval 33254 rlocmulval 33255 rloc0g 33257 fracfld 33289 orngsqr 33313 ornglmulle 33314 orngrmulle 33315 ornglmullt 33316 orngrmullt 33317 orngmullt 33318 ofldchr 33323 isarchiofld 33326 qusker 33356 grplsm0l 33410 qus0g 33414 nsgqus0 33417 nsgmgclem 33418 fedgmullem1 33656 irredminply 33721 rtelextdg2lem 33731 qqh0 33946 sconnpi1 35223 lfl0f 39050 lkrlss 39076 lshpkrlem1 39091 lkrin 39145 dvhgrp 41089 primrootscoprmpow 42080 aks5lem7 42181 fsuppind 42576 fsuppssind 42579 mhpind 42580 evl1at0 48236 |
Copyright terms: Public domain | W3C validator |