Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18189 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18005 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 Basecbs 16554 0gc0g 16784 Mndcmnd 17990 Grpcgrp 18182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-iota 6299 df-fun 6342 df-fv 6348 df-riota 7114 df-ov 7159 df-0g 16786 df-mgm 17931 df-sgrp 17980 df-mnd 17991 df-grp 18185 |
This theorem is referenced by: grpbn0 18212 grprcan 18217 grpid 18219 isgrpid2 18220 grprinv 18233 grpidinv 18239 grpinvid 18240 grpidrcan 18244 grpidlcan 18245 grpidssd 18255 grpinvval2 18262 grpsubid1 18264 imasgrp 18295 mulgcl 18325 mulgz 18335 subg0 18365 subg0cl 18367 issubg4 18378 0subg 18384 nmzsubg 18397 eqgid 18412 qusgrp 18415 qus0 18418 ghmid 18444 ghmpreima 18460 ghmf1 18467 gafo 18506 gaid 18509 gass 18511 gaorber 18518 gastacl 18519 lactghmga 18613 cayleylem2 18621 symgsssg 18675 symgfisg 18676 od1 18766 gexdvds 18789 sylow1lem2 18804 sylow3lem1 18832 lsmdisj2 18888 0frgp 18985 odadd1 19049 torsubg 19055 oddvdssubg 19056 0cyg 19094 prmcyg 19095 telgsums 19194 dprdfadd 19223 dprdz 19233 pgpfac1lem3a 19279 ablsimpgprmd 19318 ring0cl 19403 ringlz 19421 ringrz 19422 f1ghm0to0 19576 kerf1ghm 19579 isdrng2 19593 srng0 19712 lmod0vcl 19744 islmhm2 19891 frgpcyg 20354 ip0l 20414 ocvlss 20450 ascl0 20659 psr0cl 20735 mplsubglem 20777 mhp0cl 20902 mhpaddcl 20907 evl1gsumd 21089 grpvlinv 21110 matinvgcell 21148 mat0dim0 21180 mdetdiag 21312 mdetuni0 21334 chpdmatlem2 21552 chp0mat 21559 istgp2 22804 cldsubg 22824 tgpconncompeqg 22825 tgpconncomp 22826 snclseqg 22829 tgphaus 22830 tgpt1 22831 qustgphaus 22836 tgptsmscls 22863 nrmmetd 23289 nmfval2 23306 nmval2 23307 nmf2 23308 ngpds3 23323 nmge0 23332 nmeq0 23333 nminv 23336 nmmtri 23337 nmrtri 23339 nm0 23344 tngnm 23366 idnghm 23458 nmcn 23558 clmvz 23825 nmoleub2lem2 23830 nglmle 24015 mdeg0 24783 dchrinv 25957 dchr1re 25959 dchrpt 25963 dchrsum2 25964 dchrhash 25967 rpvmasumlem 26183 rpvmasum2 26208 dchrisum0re 26209 ogrpinv0lt 30886 ogrpinvlt 30887 isarchi3 30979 archirng 30980 archirngz 30981 archiabllem1b 30984 rmfsupp2 31030 orngsqr 31041 ornglmulle 31042 orngrmulle 31043 ornglmullt 31044 orngrmullt 31045 orngmullt 31046 ofldchr 31051 isarchiofld 31054 qusker 31082 eqg0el 31090 grplsm0l 31124 nsgqus0 31128 nsgmgclem 31129 fedgmullem1 31243 qqh0 31465 sconnpi1 32729 lfl0f 36679 lkrlss 36705 lshpkrlem1 36720 lkrin 36774 dvhgrp 38717 fsuppind 39819 fsuppssind 39822 mhpind 39823 rnglz 44924 zrrnghm 44957 evl1at0 45214 |
Copyright terms: Public domain | W3C validator |