Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidcl | Structured version Visualization version GIF version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidcl | ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18593 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpidcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grpidcl.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 2, 3 | mndidcl 18409 | . 2 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 Basecbs 16921 0gc0g 17159 Mndcmnd 18394 Grpcgrp 18586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 df-riota 7241 df-ov 7287 df-0g 17161 df-mgm 18335 df-sgrp 18384 df-mnd 18395 df-grp 18589 |
This theorem is referenced by: grpbn0 18617 grprcan 18622 grpid 18624 isgrpid2 18625 grprinv 18638 grpidinv 18644 grpinvid 18645 grpidrcan 18649 grpidlcan 18650 grpidssd 18660 grpinvval2 18667 grpsubid1 18669 imasgrp 18700 mulgcl 18730 mulgz 18740 subg0 18770 subg0cl 18772 issubg4 18783 0subg 18789 nmzsubg 18802 eqgid 18817 qusgrp 18820 qus0 18823 ghmid 18849 ghmpreima 18865 ghmf1 18872 gafo 18911 gaid 18914 gass 18916 gaorber 18923 gastacl 18924 lactghmga 19022 cayleylem2 19030 symgsssg 19084 symgfisg 19085 od1 19175 gexdvds 19198 sylow1lem2 19213 sylow3lem1 19241 lsmdisj2 19297 0frgp 19394 odadd1 19458 torsubg 19464 oddvdssubg 19465 0cyg 19503 prmcyg 19504 telgsums 19603 dprdfadd 19632 dprdz 19642 pgpfac1lem3a 19688 ablsimpgprmd 19727 ring0cl 19817 ringlz 19835 ringrz 19836 f1ghm0to0 19993 kerf1ghm 19996 isdrng2 20010 srng0 20129 lmod0vcl 20161 islmhm2 20309 frgpcyg 20790 ip0l 20850 ocvlss 20886 ascl0 21097 psr0cl 21172 mplsubglem 21214 mhp0cl 21345 mhpaddcl 21350 evl1gsumd 21532 grpvlinv 21553 matinvgcell 21593 mat0dim0 21625 mdetdiag 21757 mdetuni0 21779 chpdmatlem2 21997 chp0mat 22004 istgp2 23251 cldsubg 23271 tgpconncompeqg 23272 tgpconncomp 23273 snclseqg 23276 tgphaus 23277 tgpt1 23278 qustgphaus 23283 tgptsmscls 23310 nrmmetd 23739 nmfval2 23756 nmval2 23757 nmf2 23758 ngpds3 23773 nmge0 23782 nmeq0 23783 nminv 23786 nmmtri 23787 nmrtri 23789 nm0 23794 tngnm 23824 idnghm 23916 nmcn 24016 clmvz 24283 nmoleub2lem2 24288 nglmle 24475 mdeg0 25244 dchrinv 26418 dchr1re 26420 dchrpt 26424 dchrsum2 26425 dchrhash 26428 rpvmasumlem 26644 rpvmasum2 26669 dchrisum0re 26670 ogrpinv0lt 31357 ogrpinvlt 31358 isarchi3 31450 archirng 31451 archirngz 31452 archiabllem1b 31455 rmfsupp2 31501 orngsqr 31512 ornglmulle 31513 orngrmulle 31514 ornglmullt 31515 orngrmullt 31516 orngmullt 31517 ofldchr 31522 isarchiofld 31525 qusker 31558 eqg0el 31566 grplsm0l 31600 nsgqus0 31604 nsgmgclem 31605 fedgmullem1 31719 qqh0 31943 sconnpi1 33210 lfl0f 37090 lkrlss 37116 lshpkrlem1 37131 lkrin 37185 dvhgrp 39128 isdomn4 40179 fsuppind 40286 fsuppssind 40289 mhpind 40290 rnglz 45453 zrrnghm 45486 evl1at0 45743 |
Copyright terms: Public domain | W3C validator |