![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18980 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndlid 18792 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 Grpcgrp 18973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 |
This theorem is referenced by: grplidd 19009 grprcan 19013 grpid 19015 isgrpid2 19016 grprinv 19030 grpinvid1 19031 grpinvid2 19032 grpidinv2 19037 grpinvid 19039 grplcan 19040 grpasscan1 19041 grpidlcan 19044 grplmulf1o 19053 grpidssd 19056 grpinvadd 19058 grpinvval2 19063 grplactcnv 19083 imasgrp 19096 mulgaddcom 19138 mulgdirlem 19145 subg0 19172 issubg2 19181 issubg4 19185 0subgOLD 19192 isnsg3 19200 nmzsubg 19205 ssnmz 19206 eqgid 19220 qusgrp 19226 qus0 19229 ghmid 19262 conjghm 19289 subgga 19340 cntzsubg 19379 sylow1lem2 19641 sylow2blem2 19663 sylow2blem3 19664 sylow3lem1 19669 lsmmod 19717 lsmdisj2 19724 pj1rid 19744 abladdsub4 19853 ablpncan2 19857 ablpnpcan 19861 ablnncan 19862 odadd1 19890 odadd2 19891 oddvdssubg 19897 dprdfadd 20064 pgpfac1lem3a 20120 rnglz 20192 rngrz 20193 isabvd 20835 lmod0vlid 20912 lmod0vs 20915 freshmansdream 21616 evpmodpmf1o 21637 ocvlss 21713 lsmcss 21733 psr0lid 21996 mplsubglem 22042 mplcoe1 22078 mdetunilem6 22644 mdetunilem9 22647 ghmcnp 24144 tgpt0 24148 qustgpopn 24149 mdegaddle 26133 ply1rem 26225 gsumsubg 33029 ogrpinv0le 33065 ogrpaddltrbid 33070 ogrpinv0lt 33072 ogrpinvlt 33073 cyc3genpmlem 33144 isarchi3 33167 archirngz 33169 archiabllem1b 33172 orngsqr 33299 ornglmulle 33300 orngrmulle 33301 qusker 33342 grplsm0l 33396 quslsm 33398 mxidlprm 33463 matunitlindflem1 37576 lfl0f 39025 lfladd0l 39030 lkrlss 39051 lkrin 39120 dvhgrp 41064 baerlem3lem1 41664 mapdh6bN 41694 hdmap1l6b 41768 hdmapinvlem3 41877 hdmapinvlem4 41878 hdmapglem7b 41885 fsuppind 42545 fsuppssind 42548 |
Copyright terms: Public domain | W3C validator |