![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18971 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndlid 18780 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Mndcmnd 18760 Grpcgrp 18964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 |
This theorem is referenced by: grplidd 19000 grprcan 19004 grpid 19006 isgrpid2 19007 grprinv 19021 grpinvid1 19022 grpinvid2 19023 grpidinv2 19028 grpinvid 19030 grplcan 19031 grpasscan1 19032 grpidlcan 19035 grplmulf1o 19044 grpidssd 19047 grpinvadd 19049 grpinvval2 19054 grplactcnv 19074 imasgrp 19087 mulgaddcom 19129 mulgdirlem 19136 subg0 19163 issubg2 19172 issubg4 19176 0subgOLD 19183 isnsg3 19191 nmzsubg 19196 ssnmz 19197 eqgid 19211 qusgrp 19217 qus0 19220 ghmid 19253 conjghm 19280 subgga 19331 cntzsubg 19370 sylow1lem2 19632 sylow2blem2 19654 sylow2blem3 19655 sylow3lem1 19660 lsmmod 19708 lsmdisj2 19715 pj1rid 19735 abladdsub4 19844 ablpncan2 19848 ablpnpcan 19852 ablnncan 19853 odadd1 19881 odadd2 19882 oddvdssubg 19888 dprdfadd 20055 pgpfac1lem3a 20111 rnglz 20183 rngrz 20184 isabvd 20830 lmod0vlid 20907 lmod0vs 20910 freshmansdream 21611 evpmodpmf1o 21632 ocvlss 21708 lsmcss 21728 psr0lid 21991 mplsubglem 22037 mplcoe1 22073 mdetunilem6 22639 mdetunilem9 22642 ghmcnp 24139 tgpt0 24143 qustgpopn 24144 mdegaddle 26128 ply1rem 26220 gsumsubg 33032 ogrpinv0le 33075 ogrpaddltrbid 33080 ogrpinv0lt 33082 ogrpinvlt 33083 cyc3genpmlem 33154 isarchi3 33177 archirngz 33179 archiabllem1b 33182 orngsqr 33314 ornglmulle 33315 orngrmulle 33316 qusker 33357 grplsm0l 33411 quslsm 33413 mxidlprm 33478 matunitlindflem1 37603 lfl0f 39051 lfladd0l 39056 lkrlss 39077 lkrin 39146 dvhgrp 41090 baerlem3lem1 41690 mapdh6bN 41720 hdmap1l6b 41794 hdmapinvlem3 41903 hdmapinvlem4 41904 hdmapglem7b 41911 fsuppind 42577 fsuppssind 42580 |
Copyright terms: Public domain | W3C validator |