| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18855 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndlid 18664 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 0gc0g 17345 Mndcmnd 18644 Grpcgrp 18848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 |
| This theorem is referenced by: grplidd 18884 grprcan 18888 grpid 18890 isgrpid2 18891 grprinv 18905 grpinvid1 18906 grpinvid2 18907 grpidinv2 18912 grpinvid 18914 grplcan 18915 grpasscan1 18916 grpidlcan 18919 grplmulf1o 18928 grpidssd 18931 grpinvadd 18933 grpinvval2 18938 grplactcnv 18958 imasgrp 18971 mulgaddcom 19013 mulgdirlem 19020 subg0 19047 issubg2 19056 issubg4 19060 isnsg3 19074 nmzsubg 19079 ssnmz 19080 eqgid 19094 qusgrp 19100 qus0 19103 ghmid 19136 conjghm 19163 subgga 19214 cntzsubg 19253 sylow1lem2 19513 sylow2blem2 19535 sylow2blem3 19536 sylow3lem1 19541 lsmmod 19589 lsmdisj2 19596 pj1rid 19616 abladdsub4 19725 ablpncan2 19729 ablpnpcan 19733 ablnncan 19734 odadd1 19762 odadd2 19763 oddvdssubg 19769 dprdfadd 19936 pgpfac1lem3a 19992 ogrpinv0le 20050 ogrpaddltrbid 20055 ogrpinv0lt 20057 ogrpinvlt 20058 rnglz 20085 rngrz 20086 isabvd 20729 orngsqr 20783 ornglmulle 20784 orngrmulle 20785 lmod0vlid 20827 lmod0vs 20830 freshmansdream 21513 evpmodpmf1o 21535 ocvlss 21611 lsmcss 21631 psr0lid 21892 mplsubglem 21937 mplcoe1 21973 mdetunilem6 22533 mdetunilem9 22536 ghmcnp 24031 tgpt0 24035 qustgpopn 24036 mdegaddle 26007 ply1rem 26099 gsumsubg 33033 cyc3genpmlem 33127 isarchi3 33163 archirngz 33165 archiabllem1b 33168 qusker 33321 grplsm0l 33375 quslsm 33377 mxidlprm 33442 matunitlindflem1 37676 lfl0f 39188 lfladd0l 39193 lkrlss 39214 lkrin 39283 dvhgrp 41226 baerlem3lem1 41826 mapdh6bN 41856 hdmap1l6b 41930 hdmapinvlem3 42039 hdmapinvlem4 42040 hdmapglem7b 42047 fsuppind 42708 fsuppssind 42711 |
| Copyright terms: Public domain | W3C validator |