| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18923 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndlid 18732 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 Grpcgrp 18916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 |
| This theorem is referenced by: grplidd 18952 grprcan 18956 grpid 18958 isgrpid2 18959 grprinv 18973 grpinvid1 18974 grpinvid2 18975 grpidinv2 18980 grpinvid 18982 grplcan 18983 grpasscan1 18984 grpidlcan 18987 grplmulf1o 18996 grpidssd 18999 grpinvadd 19001 grpinvval2 19006 grplactcnv 19026 imasgrp 19039 mulgaddcom 19081 mulgdirlem 19088 subg0 19115 issubg2 19124 issubg4 19128 0subgOLD 19135 isnsg3 19143 nmzsubg 19148 ssnmz 19149 eqgid 19163 qusgrp 19169 qus0 19172 ghmid 19205 conjghm 19232 subgga 19283 cntzsubg 19322 sylow1lem2 19580 sylow2blem2 19602 sylow2blem3 19603 sylow3lem1 19608 lsmmod 19656 lsmdisj2 19663 pj1rid 19683 abladdsub4 19792 ablpncan2 19796 ablpnpcan 19800 ablnncan 19801 odadd1 19829 odadd2 19830 oddvdssubg 19836 dprdfadd 20003 pgpfac1lem3a 20059 rnglz 20125 rngrz 20126 isabvd 20772 lmod0vlid 20849 lmod0vs 20852 freshmansdream 21535 evpmodpmf1o 21556 ocvlss 21632 lsmcss 21652 psr0lid 21913 mplsubglem 21959 mplcoe1 21995 mdetunilem6 22555 mdetunilem9 22558 ghmcnp 24053 tgpt0 24057 qustgpopn 24058 mdegaddle 26031 ply1rem 26123 gsumsubg 33040 ogrpinv0le 33083 ogrpaddltrbid 33088 ogrpinv0lt 33090 ogrpinvlt 33091 cyc3genpmlem 33162 isarchi3 33185 archirngz 33187 archiabllem1b 33190 orngsqr 33326 ornglmulle 33327 orngrmulle 33328 qusker 33364 grplsm0l 33418 quslsm 33420 mxidlprm 33485 matunitlindflem1 37640 lfl0f 39087 lfladd0l 39092 lkrlss 39113 lkrin 39182 dvhgrp 41126 baerlem3lem1 41726 mapdh6bN 41756 hdmap1l6b 41830 hdmapinvlem3 41939 hdmapinvlem4 41940 hdmapglem7b 41947 fsuppind 42613 fsuppssind 42616 |
| Copyright terms: Public domain | W3C validator |