| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18872 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndlid 18681 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 Grpcgrp 18865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 |
| This theorem is referenced by: grplidd 18901 grprcan 18905 grpid 18907 isgrpid2 18908 grprinv 18922 grpinvid1 18923 grpinvid2 18924 grpidinv2 18929 grpinvid 18931 grplcan 18932 grpasscan1 18933 grpidlcan 18936 grplmulf1o 18945 grpidssd 18948 grpinvadd 18950 grpinvval2 18955 grplactcnv 18975 imasgrp 18988 mulgaddcom 19030 mulgdirlem 19037 subg0 19064 issubg2 19073 issubg4 19077 0subgOLD 19084 isnsg3 19092 nmzsubg 19097 ssnmz 19098 eqgid 19112 qusgrp 19118 qus0 19121 ghmid 19154 conjghm 19181 subgga 19232 cntzsubg 19271 sylow1lem2 19529 sylow2blem2 19551 sylow2blem3 19552 sylow3lem1 19557 lsmmod 19605 lsmdisj2 19612 pj1rid 19632 abladdsub4 19741 ablpncan2 19745 ablpnpcan 19749 ablnncan 19750 odadd1 19778 odadd2 19779 oddvdssubg 19785 dprdfadd 19952 pgpfac1lem3a 20008 rnglz 20074 rngrz 20075 isabvd 20721 lmod0vlid 20798 lmod0vs 20801 freshmansdream 21484 evpmodpmf1o 21505 ocvlss 21581 lsmcss 21601 psr0lid 21862 mplsubglem 21908 mplcoe1 21944 mdetunilem6 22504 mdetunilem9 22507 ghmcnp 24002 tgpt0 24006 qustgpopn 24007 mdegaddle 25979 ply1rem 26071 gsumsubg 32986 ogrpinv0le 33029 ogrpaddltrbid 33034 ogrpinv0lt 33036 ogrpinvlt 33037 cyc3genpmlem 33108 isarchi3 33141 archirngz 33143 archiabllem1b 33146 orngsqr 33282 ornglmulle 33283 orngrmulle 33284 qusker 33320 grplsm0l 33374 quslsm 33376 mxidlprm 33441 matunitlindflem1 37610 lfl0f 39062 lfladd0l 39067 lkrlss 39088 lkrin 39157 dvhgrp 41101 baerlem3lem1 41701 mapdh6bN 41731 hdmap1l6b 41805 hdmapinvlem3 41914 hdmapinvlem4 41915 hdmapglem7b 41922 fsuppind 42578 fsuppssind 42581 |
| Copyright terms: Public domain | W3C validator |