Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18565 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndlid 18386 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 +gcplusg 16943 0gc0g 17131 Mndcmnd 18366 Grpcgrp 18558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-riota 7225 df-ov 7271 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 |
This theorem is referenced by: grprcan 18594 grpid 18596 isgrpid2 18597 grprinv 18610 grpinvid1 18611 grpinvid2 18612 grpidinv2 18615 grpinvid 18617 grplcan 18618 grpasscan1 18619 grpidlcan 18622 grplmulf1o 18630 grpidssd 18632 grpinvadd 18634 grpinvval2 18639 grplactcnv 18659 imasgrp 18672 mulgaddcom 18708 mulgdirlem 18715 subg0 18742 issubg2 18751 issubg4 18755 0subg 18761 isnsg3 18769 nmzsubg 18774 ssnmz 18775 eqger 18787 eqgid 18789 qusgrp 18792 qus0 18795 ghmid 18821 conjghm 18846 conjnmz 18849 subgga 18887 cntzsubg 18924 sylow1lem2 19185 sylow2blem2 19207 sylow2blem3 19208 sylow3lem1 19213 lsmmod 19262 lsmdisj2 19269 pj1rid 19289 abladdsub4 19396 ablpncan2 19398 ablpnpcan 19402 ablnncan 19403 odadd1 19430 odadd2 19431 oddvdssubg 19437 dprdfadd 19604 pgpfac1lem3a 19660 ringlz 19807 ringrz 19808 isabvd 20061 lmod0vlid 20134 lmod0vs 20137 evpmodpmf1o 20782 ocvlss 20858 lsmcss 20878 psr0lid 21145 mplsubglem 21186 mplcoe1 21219 mhpaddcl 21322 mdetunilem6 21747 mdetunilem9 21750 ghmcnp 23247 tgpt0 23251 qustgpopn 23252 mdegaddle 25220 ply1rem 25309 gsumsubg 31285 ogrpinv0le 31320 ogrpaddltrbid 31325 ogrpinv0lt 31327 ogrpinvlt 31328 cyc3genpmlem 31397 isarchi3 31420 archirngz 31422 archiabllem1b 31425 freshmansdream 31463 orngsqr 31482 ornglmulle 31483 orngrmulle 31484 ofldchr 31492 qusker 31528 grplsm0l 31570 quslsm 31572 mxidlprm 31619 dimkerim 31687 matunitlindflem1 35752 lfl0f 37062 lfladd0l 37067 lkrlss 37088 lkrin 37157 dvhgrp 39100 baerlem3lem1 39700 mapdh6bN 39730 hdmap1l6b 39804 hdmapinvlem3 39913 hdmapinvlem4 39914 hdmapglem7b 39921 fsuppind 40259 fsuppssind 40262 rnglz 45394 |
Copyright terms: Public domain | W3C validator |