| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18850 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndlid 18659 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 Mndcmnd 18639 Grpcgrp 18843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 |
| This theorem is referenced by: grplidd 18879 grprcan 18883 grpid 18885 isgrpid2 18886 grprinv 18900 grpinvid1 18901 grpinvid2 18902 grpidinv2 18907 grpinvid 18909 grplcan 18910 grpasscan1 18911 grpidlcan 18914 grplmulf1o 18923 grpidssd 18926 grpinvadd 18928 grpinvval2 18933 grplactcnv 18953 imasgrp 18966 mulgaddcom 19008 mulgdirlem 19015 subg0 19042 issubg2 19051 issubg4 19055 0subgOLD 19062 isnsg3 19070 nmzsubg 19075 ssnmz 19076 eqgid 19090 qusgrp 19096 qus0 19099 ghmid 19132 conjghm 19159 subgga 19210 cntzsubg 19249 sylow1lem2 19509 sylow2blem2 19531 sylow2blem3 19532 sylow3lem1 19537 lsmmod 19585 lsmdisj2 19592 pj1rid 19612 abladdsub4 19721 ablpncan2 19725 ablpnpcan 19729 ablnncan 19730 odadd1 19758 odadd2 19759 oddvdssubg 19765 dprdfadd 19932 pgpfac1lem3a 19988 ogrpinv0le 20046 ogrpaddltrbid 20051 ogrpinv0lt 20053 ogrpinvlt 20054 rnglz 20081 rngrz 20082 isabvd 20725 orngsqr 20779 ornglmulle 20780 orngrmulle 20781 lmod0vlid 20823 lmod0vs 20826 freshmansdream 21509 evpmodpmf1o 21531 ocvlss 21607 lsmcss 21627 psr0lid 21888 mplsubglem 21934 mplcoe1 21970 mdetunilem6 22530 mdetunilem9 22533 ghmcnp 24028 tgpt0 24032 qustgpopn 24033 mdegaddle 26004 ply1rem 26096 gsumsubg 33021 cyc3genpmlem 33115 isarchi3 33151 archirngz 33153 archiabllem1b 33156 qusker 33309 grplsm0l 33363 quslsm 33365 mxidlprm 33430 matunitlindflem1 37655 lfl0f 39107 lfladd0l 39112 lkrlss 39133 lkrin 39202 dvhgrp 41145 baerlem3lem1 41745 mapdh6bN 41775 hdmap1l6b 41849 hdmapinvlem3 41958 hdmapinvlem4 41959 hdmapglem7b 41966 fsuppind 42622 fsuppssind 42625 |
| Copyright terms: Public domain | W3C validator |