| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18837 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndlid 18646 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Mndcmnd 18626 Grpcgrp 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 |
| This theorem is referenced by: grplidd 18866 grprcan 18870 grpid 18872 isgrpid2 18873 grprinv 18887 grpinvid1 18888 grpinvid2 18889 grpidinv2 18894 grpinvid 18896 grplcan 18897 grpasscan1 18898 grpidlcan 18901 grplmulf1o 18910 grpidssd 18913 grpinvadd 18915 grpinvval2 18920 grplactcnv 18940 imasgrp 18953 mulgaddcom 18995 mulgdirlem 19002 subg0 19029 issubg2 19038 issubg4 19042 0subgOLD 19049 isnsg3 19057 nmzsubg 19062 ssnmz 19063 eqgid 19077 qusgrp 19083 qus0 19086 ghmid 19119 conjghm 19146 subgga 19197 cntzsubg 19236 sylow1lem2 19496 sylow2blem2 19518 sylow2blem3 19519 sylow3lem1 19524 lsmmod 19572 lsmdisj2 19579 pj1rid 19599 abladdsub4 19708 ablpncan2 19712 ablpnpcan 19716 ablnncan 19717 odadd1 19745 odadd2 19746 oddvdssubg 19752 dprdfadd 19919 pgpfac1lem3a 19975 ogrpinv0le 20033 ogrpaddltrbid 20038 ogrpinv0lt 20040 ogrpinvlt 20041 rnglz 20068 rngrz 20069 isabvd 20715 orngsqr 20769 ornglmulle 20770 orngrmulle 20771 lmod0vlid 20813 lmod0vs 20816 freshmansdream 21499 evpmodpmf1o 21521 ocvlss 21597 lsmcss 21617 psr0lid 21878 mplsubglem 21924 mplcoe1 21960 mdetunilem6 22520 mdetunilem9 22523 ghmcnp 24018 tgpt0 24022 qustgpopn 24023 mdegaddle 25995 ply1rem 26087 gsumsubg 33012 cyc3genpmlem 33106 isarchi3 33139 archirngz 33141 archiabllem1b 33144 qusker 33296 grplsm0l 33350 quslsm 33352 mxidlprm 33417 matunitlindflem1 37595 lfl0f 39047 lfladd0l 39052 lkrlss 39073 lkrin 39142 dvhgrp 41086 baerlem3lem1 41686 mapdh6bN 41716 hdmap1l6b 41790 hdmapinvlem3 41899 hdmapinvlem4 41900 hdmapglem7b 41907 fsuppind 42563 fsuppssind 42566 |
| Copyright terms: Public domain | W3C validator |