Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
grplid.p | ⊢ + = (+g‘𝐺) |
grplid.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18629 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
5 | 2, 3, 4 | mndlid 18450 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
6 | 1, 5 | sylan 581 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 +gcplusg 17007 0gc0g 17195 Mndcmnd 18430 Grpcgrp 18622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-riota 7264 df-ov 7310 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 |
This theorem is referenced by: grprcan 18658 grpid 18660 isgrpid2 18661 grprinv 18674 grpinvid1 18675 grpinvid2 18676 grpidinv2 18679 grpinvid 18681 grplcan 18682 grpasscan1 18683 grpidlcan 18686 grplmulf1o 18694 grpidssd 18696 grpinvadd 18698 grpinvval2 18703 grplactcnv 18723 imasgrp 18736 mulgaddcom 18772 mulgdirlem 18779 subg0 18806 issubg2 18815 issubg4 18819 0subg 18825 isnsg3 18833 nmzsubg 18838 ssnmz 18839 eqger 18851 eqgid 18853 qusgrp 18856 qus0 18859 ghmid 18885 conjghm 18910 conjnmz 18913 subgga 18951 cntzsubg 18988 sylow1lem2 19249 sylow2blem2 19271 sylow2blem3 19272 sylow3lem1 19277 lsmmod 19326 lsmdisj2 19333 pj1rid 19353 abladdsub4 19460 ablpncan2 19462 ablpnpcan 19466 ablnncan 19467 odadd1 19494 odadd2 19495 oddvdssubg 19501 dprdfadd 19668 pgpfac1lem3a 19724 ringlz 19871 ringrz 19872 isabvd 20125 lmod0vlid 20198 lmod0vs 20201 evpmodpmf1o 20846 ocvlss 20922 lsmcss 20942 psr0lid 21209 mplsubglem 21250 mplcoe1 21283 mhpaddcl 21386 mdetunilem6 21811 mdetunilem9 21814 ghmcnp 23311 tgpt0 23315 qustgpopn 23316 mdegaddle 25284 ply1rem 25373 gsumsubg 31351 ogrpinv0le 31386 ogrpaddltrbid 31391 ogrpinv0lt 31393 ogrpinvlt 31394 cyc3genpmlem 31463 isarchi3 31486 archirngz 31488 archiabllem1b 31491 freshmansdream 31529 orngsqr 31548 ornglmulle 31549 orngrmulle 31550 ofldchr 31558 qusker 31594 grplsm0l 31636 quslsm 31638 mxidlprm 31685 dimkerim 31753 matunitlindflem1 35817 lfl0f 37125 lfladd0l 37130 lkrlss 37151 lkrin 37220 dvhgrp 39163 baerlem3lem1 39763 mapdh6bN 39793 hdmap1l6b 39867 hdmapinvlem3 39976 hdmapinvlem4 39977 hdmapglem7b 39984 fsuppind 40316 fsuppssind 40319 rnglz 45500 |
Copyright terms: Public domain | W3C validator |