| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplid | Structured version Visualization version GIF version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplid.p | ⊢ + = (+g‘𝐺) |
| grplid.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grplid | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18879 | . 2 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
| 2 | grpbn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | grplid.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | grplid.o | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 5 | 2, 3, 4 | mndlid 18688 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ( 0 + 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 Grpcgrp 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 |
| This theorem is referenced by: grplidd 18908 grprcan 18912 grpid 18914 isgrpid2 18915 grprinv 18929 grpinvid1 18930 grpinvid2 18931 grpidinv2 18936 grpinvid 18938 grplcan 18939 grpasscan1 18940 grpidlcan 18943 grplmulf1o 18952 grpidssd 18955 grpinvadd 18957 grpinvval2 18962 grplactcnv 18982 imasgrp 18995 mulgaddcom 19037 mulgdirlem 19044 subg0 19071 issubg2 19080 issubg4 19084 0subgOLD 19091 isnsg3 19099 nmzsubg 19104 ssnmz 19105 eqgid 19119 qusgrp 19125 qus0 19128 ghmid 19161 conjghm 19188 subgga 19239 cntzsubg 19278 sylow1lem2 19536 sylow2blem2 19558 sylow2blem3 19559 sylow3lem1 19564 lsmmod 19612 lsmdisj2 19619 pj1rid 19639 abladdsub4 19748 ablpncan2 19752 ablpnpcan 19756 ablnncan 19757 odadd1 19785 odadd2 19786 oddvdssubg 19792 dprdfadd 19959 pgpfac1lem3a 20015 rnglz 20081 rngrz 20082 isabvd 20728 lmod0vlid 20805 lmod0vs 20808 freshmansdream 21491 evpmodpmf1o 21512 ocvlss 21588 lsmcss 21608 psr0lid 21869 mplsubglem 21915 mplcoe1 21951 mdetunilem6 22511 mdetunilem9 22514 ghmcnp 24009 tgpt0 24013 qustgpopn 24014 mdegaddle 25986 ply1rem 26078 gsumsubg 32993 ogrpinv0le 33036 ogrpaddltrbid 33041 ogrpinv0lt 33043 ogrpinvlt 33044 cyc3genpmlem 33115 isarchi3 33148 archirngz 33150 archiabllem1b 33153 orngsqr 33289 ornglmulle 33290 orngrmulle 33291 qusker 33327 grplsm0l 33381 quslsm 33383 mxidlprm 33448 matunitlindflem1 37617 lfl0f 39069 lfladd0l 39074 lkrlss 39095 lkrin 39164 dvhgrp 41108 baerlem3lem1 41708 mapdh6bN 41738 hdmap1l6b 41812 hdmapinvlem3 41921 hdmapinvlem4 41922 hdmapglem7b 41929 fsuppind 42585 fsuppssind 42588 |
| Copyright terms: Public domain | W3C validator |