Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpidrcan | Structured version Visualization version GIF version |
Description: If right adding an element of a group to an arbitrary element of the group results in this element, the added element is the identity element and vice versa. (Contributed by AV, 15-Mar-2019.) |
Ref | Expression |
---|---|
grpidrcan.b | ⊢ 𝐵 = (Base‘𝐺) |
grpidrcan.p | ⊢ + = (+g‘𝐺) |
grpidrcan.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidrcan | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = 𝑋 ↔ 𝑍 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidrcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpidrcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpidrcan.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grprid 18610 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
5 | 4 | 3adant3 1131 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 + 0 ) = 𝑋) |
6 | 5 | eqeq2d 2749 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = (𝑋 + 0 ) ↔ (𝑋 + 𝑍) = 𝑋)) |
7 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝐺 ∈ Grp) | |
8 | simp3 1137 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
9 | 1, 3 | grpidcl 18607 | . . . 4 ⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
10 | 9 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 0 ∈ 𝐵) |
11 | simp2 1136 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
12 | 1, 2 | grplcan 18637 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑍 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑋 + 𝑍) = (𝑋 + 0 ) ↔ 𝑍 = 0 )) |
13 | 7, 8, 10, 11, 12 | syl13anc 1371 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = (𝑋 + 0 ) ↔ 𝑍 = 0 )) |
14 | 6, 13 | bitr3d 280 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → ((𝑋 + 𝑍) = 𝑋 ↔ 𝑍 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Grpcgrp 18577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |