Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > h2hmetdval | Structured version Visualization version GIF version |
Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
h2h.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
h2h.2 | ⊢ 𝑈 ∈ NrmCVec |
h2hm.4 | ⊢ ℋ = (BaseSet‘𝑈) |
h2hm.5 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
h2hmetdval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | h2h.2 | . 2 ⊢ 𝑈 ∈ NrmCVec | |
2 | h2hm.4 | . . 3 ⊢ ℋ = (BaseSet‘𝑈) | |
3 | h2h.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
4 | 3, 1, 2 | h2hvs 29628 | . . 3 ⊢ −ℎ = ( −𝑣 ‘𝑈) |
5 | 3, 1 | h2hnm 29627 | . . 3 ⊢ normℎ = (normCV‘𝑈) |
6 | h2hm.5 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
7 | 2, 4, 5, 6 | imsdval 29337 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) |
8 | 1, 7 | mp3an1 1447 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴𝐷𝐵) = (normℎ‘(𝐴 −ℎ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 〈cop 4580 ‘cfv 6480 (class class class)co 7338 NrmCVeccnv 29235 BaseSetcba 29237 IndMetcims 29242 ℋchba 29570 +ℎ cva 29571 ·ℎ csm 29572 normℎcno 29574 −ℎ cmv 29576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-po 5533 df-so 5534 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-1st 7900 df-2nd 7901 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-ltxr 11116 df-sub 11309 df-neg 11310 df-grpo 29144 df-gid 29145 df-ginv 29146 df-gdiv 29147 df-ablo 29196 df-vc 29210 df-nv 29243 df-va 29246 df-ba 29247 df-sm 29248 df-0v 29249 df-vs 29250 df-nmcv 29251 df-ims 29252 df-hvsub 29622 |
This theorem is referenced by: h2hcau 29630 h2hlm 29631 hhmetdval 29827 |
Copyright terms: Public domain | W3C validator |