HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  h2hmetdval Structured version   Visualization version   GIF version

Theorem h2hmetdval 29969
Description: Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 6-Jun-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
h2h.1 π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
h2h.2 π‘ˆ ∈ NrmCVec
h2hm.4 β„‹ = (BaseSetβ€˜π‘ˆ)
h2hm.5 𝐷 = (IndMetβ€˜π‘ˆ)
Assertion
Ref Expression
h2hmetdval ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴𝐷𝐡) = (normβ„Žβ€˜(𝐴 βˆ’β„Ž 𝐡)))

Proof of Theorem h2hmetdval
StepHypRef Expression
1 h2h.2 . 2 π‘ˆ ∈ NrmCVec
2 h2hm.4 . . 3 β„‹ = (BaseSetβ€˜π‘ˆ)
3 h2h.1 . . . 4 π‘ˆ = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
43, 1, 2h2hvs 29968 . . 3 βˆ’β„Ž = ( βˆ’π‘£ β€˜π‘ˆ)
53, 1h2hnm 29967 . . 3 normβ„Ž = (normCVβ€˜π‘ˆ)
6 h2hm.5 . . 3 𝐷 = (IndMetβ€˜π‘ˆ)
72, 4, 5, 6imsdval 29677 . 2 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴𝐷𝐡) = (normβ„Žβ€˜(𝐴 βˆ’β„Ž 𝐡)))
81, 7mp3an1 1449 1 ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (𝐴𝐷𝐡) = (normβ„Žβ€˜(𝐴 βˆ’β„Ž 𝐡)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βŸ¨cop 4596  β€˜cfv 6500  (class class class)co 7361  NrmCVeccnv 29575  BaseSetcba 29577  IndMetcims 29582   β„‹chba 29910   +β„Ž cva 29911   Β·β„Ž csm 29912  normβ„Žcno 29914   βˆ’β„Ž cmv 29916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-ltxr 11202  df-sub 11395  df-neg 11396  df-grpo 29484  df-gid 29485  df-ginv 29486  df-gdiv 29487  df-ablo 29536  df-vc 29550  df-nv 29583  df-va 29586  df-ba 29587  df-sm 29588  df-0v 29589  df-vs 29590  df-nmcv 29591  df-ims 29592  df-hvsub 29962
This theorem is referenced by:  h2hcau  29970  h2hlm  29971  hhmetdval  30167
  Copyright terms: Public domain W3C validator