Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashbc0 | Structured version Visualization version GIF version |
Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
Ref | Expression |
---|---|
hashbc0 | ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12231 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
3 | 2 | hashbcval 16684 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0}) |
4 | 1, 3 | mpan2 687 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0}) |
5 | hasheq0 14059 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | |
6 | 5 | elv 3436 | . . . . . 6 ⊢ ((♯‘𝑥) = 0 ↔ 𝑥 = ∅) |
7 | 6 | anbi2i 622 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 = ∅)) |
8 | id 22 | . . . . . . 7 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
9 | 0elpw 5281 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 𝐴 | |
10 | 8, 9 | eqeltrdi 2848 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴) |
11 | 10 | pm4.71ri 560 | . . . . 5 ⊢ (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 = ∅)) |
12 | 7, 11 | bitr4i 277 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅) |
13 | 12 | abbii 2809 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥 ∣ 𝑥 = ∅} |
14 | df-rab 3074 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} | |
15 | df-sn 4567 | . . 3 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
16 | 13, 14, 15 | 3eqtr4i 2777 | . 2 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅} |
17 | 4, 16 | eqtrdi 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 {crab 3069 Vcvv 3430 ∅c0 4261 𝒫 cpw 4538 {csn 4566 ‘cfv 6430 (class class class)co 7268 ∈ cmpo 7270 0cc0 10855 ℕ0cn0 12216 ♯chash 14025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 |
This theorem is referenced by: 0ram 16702 |
Copyright terms: Public domain | W3C validator |