MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc0 Structured version   Visualization version   GIF version

Theorem hashbc0 16687
Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbc0 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12231 . . 3 0 ∈ ℕ0
2 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
32hashbcval 16684 . . 3 ((𝐴𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
41, 3mpan2 687 . 2 (𝐴𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
5 hasheq0 14059 . . . . . . 7 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
65elv 3436 . . . . . 6 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
76anbi2i 622 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
8 id 22 . . . . . . 7 (𝑥 = ∅ → 𝑥 = ∅)
9 0elpw 5281 . . . . . . 7 ∅ ∈ 𝒫 𝐴
108, 9eqeltrdi 2848 . . . . . 6 (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)
1110pm4.71ri 560 . . . . 5 (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
127, 11bitr4i 277 . . . 4 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅)
1312abbii 2809 . . 3 {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥𝑥 = ∅}
14 df-rab 3074 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)}
15 df-sn 4567 . . 3 {∅} = {𝑥𝑥 = ∅}
1613, 14, 153eqtr4i 2777 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅}
174, 16eqtrdi 2795 1 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  {cab 2716  {crab 3069  Vcvv 3430  c0 4261  𝒫 cpw 4538  {csn 4566  cfv 6430  (class class class)co 7268  cmpo 7270  0cc0 10855  0cn0 12216  chash 14025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-uz 12565  df-fz 13222  df-hash 14026
This theorem is referenced by:  0ram  16702
  Copyright terms: Public domain W3C validator