MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc0 Structured version   Visualization version   GIF version

Theorem hashbc0 15990
Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbc0 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11555 . . 3 0 ∈ ℕ0
2 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
32hashbcval 15987 . . 3 ((𝐴𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
41, 3mpan2 682 . 2 (𝐴𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
5 vex 3353 . . . . . . 7 𝑥 ∈ V
6 hasheq0 13356 . . . . . . 7 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
75, 6ax-mp 5 . . . . . 6 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
87anbi2i 616 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
9 id 22 . . . . . . 7 (𝑥 = ∅ → 𝑥 = ∅)
10 0elpw 4992 . . . . . . 7 ∅ ∈ 𝒫 𝐴
119, 10syl6eqel 2852 . . . . . 6 (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)
1211pm4.71ri 556 . . . . 5 (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
138, 12bitr4i 269 . . . 4 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅)
1413abbii 2882 . . 3 {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥𝑥 = ∅}
15 df-rab 3064 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)}
16 df-sn 4335 . . 3 {∅} = {𝑥𝑥 = ∅}
1714, 15, 163eqtr4i 2797 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅}
184, 17syl6eq 2815 1 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  {cab 2751  {crab 3059  Vcvv 3350  c0 4079  𝒫 cpw 4315  {csn 4334  cfv 6068  (class class class)co 6842  cmpt2 6844  0cc0 10189  0cn0 11538  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-hash 13322
This theorem is referenced by:  0ram  16005
  Copyright terms: Public domain W3C validator