Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashbc0 | Structured version Visualization version GIF version |
Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
Ref | Expression |
---|---|
hashbc0 | ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12003 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
3 | 2 | hashbcval 16450 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0}) |
4 | 1, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0}) |
5 | hasheq0 13828 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | |
6 | 5 | elv 3406 | . . . . . 6 ⊢ ((♯‘𝑥) = 0 ↔ 𝑥 = ∅) |
7 | 6 | anbi2i 626 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 = ∅)) |
8 | id 22 | . . . . . . 7 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
9 | 0elpw 5232 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 𝐴 | |
10 | 8, 9 | eqeltrdi 2842 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴) |
11 | 10 | pm4.71ri 564 | . . . . 5 ⊢ (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 = ∅)) |
12 | 7, 11 | bitr4i 281 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅) |
13 | 12 | abbii 2804 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥 ∣ 𝑥 = ∅} |
14 | df-rab 3063 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} | |
15 | df-sn 4527 | . . 3 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
16 | 13, 14, 15 | 3eqtr4i 2772 | . 2 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅} |
17 | 4, 16 | eqtrdi 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 {cab 2717 {crab 3058 Vcvv 3400 ∅c0 4221 𝒫 cpw 4498 {csn 4526 ‘cfv 6349 (class class class)co 7182 ∈ cmpo 7184 0cc0 10627 ℕ0cn0 11988 ♯chash 13794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-card 9453 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-n0 11989 df-z 12075 df-uz 12337 df-fz 12994 df-hash 13795 |
This theorem is referenced by: 0ram 16468 |
Copyright terms: Public domain | W3C validator |