Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashbc0 | Structured version Visualization version GIF version |
Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.) |
Ref | Expression |
---|---|
ramval.c | ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) |
Ref | Expression |
---|---|
hashbc0 | ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12298 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | ramval.c | . . . 4 ⊢ 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖}) | |
3 | 2 | hashbcval 16752 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0}) |
4 | 1, 3 | mpan2 689 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0}) |
5 | hasheq0 14127 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)) | |
6 | 5 | elv 3443 | . . . . . 6 ⊢ ((♯‘𝑥) = 0 ↔ 𝑥 = ∅) |
7 | 6 | anbi2i 624 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 = ∅)) |
8 | id 22 | . . . . . . 7 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
9 | 0elpw 5287 | . . . . . . 7 ⊢ ∅ ∈ 𝒫 𝐴 | |
10 | 8, 9 | eqeltrdi 2845 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴) |
11 | 10 | pm4.71ri 562 | . . . . 5 ⊢ (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 = ∅)) |
12 | 7, 11 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅) |
13 | 12 | abbii 2806 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥 ∣ 𝑥 = ∅} |
14 | df-rab 3306 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} | |
15 | df-sn 4566 | . . 3 ⊢ {∅} = {𝑥 ∣ 𝑥 = ∅} | |
16 | 13, 14, 15 | 3eqtr4i 2774 | . 2 ⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅} |
17 | 4, 16 | eqtrdi 2792 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴𝐶0) = {∅}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 {cab 2713 {crab 3303 Vcvv 3437 ∅c0 4262 𝒫 cpw 4539 {csn 4565 ‘cfv 6458 (class class class)co 7307 ∈ cmpo 7309 0cc0 10921 ℕ0cn0 12283 ♯chash 14094 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-hash 14095 |
This theorem is referenced by: 0ram 16770 |
Copyright terms: Public domain | W3C validator |