MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc0 Structured version   Visualization version   GIF version

Theorem hashbc0 16453
Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbc0 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nn0 12003 . . 3 0 ∈ ℕ0
2 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
32hashbcval 16450 . . 3 ((𝐴𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
41, 3mpan2 691 . 2 (𝐴𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
5 hasheq0 13828 . . . . . . 7 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
65elv 3406 . . . . . 6 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
76anbi2i 626 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
8 id 22 . . . . . . 7 (𝑥 = ∅ → 𝑥 = ∅)
9 0elpw 5232 . . . . . . 7 ∅ ∈ 𝒫 𝐴
108, 9eqeltrdi 2842 . . . . . 6 (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)
1110pm4.71ri 564 . . . . 5 (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
127, 11bitr4i 281 . . . 4 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅)
1312abbii 2804 . . 3 {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥𝑥 = ∅}
14 df-rab 3063 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)}
15 df-sn 4527 . . 3 {∅} = {𝑥𝑥 = ∅}
1613, 14, 153eqtr4i 2772 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅}
174, 16eqtrdi 2790 1 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  {cab 2717  {crab 3058  Vcvv 3400  c0 4221  𝒫 cpw 4498  {csn 4526  cfv 6349  (class class class)co 7182  cmpo 7184  0cc0 10627  0cn0 11988  chash 13794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-1o 8143  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-fin 8571  df-card 9453  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-n0 11989  df-z 12075  df-uz 12337  df-fz 12994  df-hash 13795
This theorem is referenced by:  0ram  16468
  Copyright terms: Public domain W3C validator