MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashbc0 Structured version   Visualization version   GIF version

Theorem hashbc0 16341
Description: The set of subsets of size zero is the singleton of the empty set. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
hashbc0 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Distinct variable groups:   𝑎,𝑏,𝑖   𝐴,𝑎,𝑖
Allowed substitution hints:   𝐴(𝑏)   𝐶(𝑖,𝑎,𝑏)   𝑉(𝑖,𝑎,𝑏)

Proof of Theorem hashbc0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0nn0 11913 . . 3 0 ∈ ℕ0
2 ramval.c . . . 4 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
32hashbcval 16338 . . 3 ((𝐴𝑉 ∧ 0 ∈ ℕ0) → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
41, 3mpan2 689 . 2 (𝐴𝑉 → (𝐴𝐶0) = {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0})
5 hasheq0 13725 . . . . . . 7 (𝑥 ∈ V → ((♯‘𝑥) = 0 ↔ 𝑥 = ∅))
65elv 3499 . . . . . 6 ((♯‘𝑥) = 0 ↔ 𝑥 = ∅)
76anbi2i 624 . . . . 5 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
8 id 22 . . . . . . 7 (𝑥 = ∅ → 𝑥 = ∅)
9 0elpw 5256 . . . . . . 7 ∅ ∈ 𝒫 𝐴
108, 9eqeltrdi 2921 . . . . . 6 (𝑥 = ∅ → 𝑥 ∈ 𝒫 𝐴)
1110pm4.71ri 563 . . . . 5 (𝑥 = ∅ ↔ (𝑥 ∈ 𝒫 𝐴𝑥 = ∅))
127, 11bitr4i 280 . . . 4 ((𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0) ↔ 𝑥 = ∅)
1312abbii 2886 . . 3 {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)} = {𝑥𝑥 = ∅}
14 df-rab 3147 . . 3 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {𝑥 ∣ (𝑥 ∈ 𝒫 𝐴 ∧ (♯‘𝑥) = 0)}
15 df-sn 4568 . . 3 {∅} = {𝑥𝑥 = ∅}
1613, 14, 153eqtr4i 2854 . 2 {𝑥 ∈ 𝒫 𝐴 ∣ (♯‘𝑥) = 0} = {∅}
174, 16syl6eq 2872 1 (𝐴𝑉 → (𝐴𝐶0) = {∅})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2799  {crab 3142  Vcvv 3494  c0 4291  𝒫 cpw 4539  {csn 4567  cfv 6355  (class class class)co 7156  cmpo 7158  0cc0 10537  0cn0 11898  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692
This theorem is referenced by:  0ram  16356
  Copyright terms: Public domain W3C validator