| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeng | Structured version Visualization version GIF version | ||
| Description: Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| eqeng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8998 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
| 2 | breq2 5123 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
| 3 | 1, 2 | syl5ibcom 245 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 |
| This theorem is referenced by: idssen 9011 onomeneqOLD 9238 pr2neOLD 10019 alephord 10089 alephdom 10095 fin23lem25 10338 alephadd 10591 aks5lem7 42213 safesnsupfidom1o 43441 rp-isfinite5 43541 sn1dom 43550 prstchom2ALT 49441 |
| Copyright terms: Public domain | W3C validator |