![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeng | Structured version Visualization version GIF version |
Description: Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
eqeng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 9023 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
2 | breq2 5152 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
3 | 1, 2 | syl5ibcom 245 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-en 8985 |
This theorem is referenced by: idssen 9036 nneneqOLD 9256 onomeneqOLD 9264 pr2neOLD 10043 alephord 10113 alephdom 10119 fin23lem25 10362 alephadd 10615 aks5lem7 42182 safesnsupfidom1o 43407 rp-isfinite5 43507 sn1dom 43516 prstchom2ALT 48880 |
Copyright terms: Public domain | W3C validator |