MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeng Structured version   Visualization version   GIF version

Theorem eqeng 9046
Description: Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
eqeng (𝐴𝑉 → (𝐴 = 𝐵𝐴𝐵))

Proof of Theorem eqeng
StepHypRef Expression
1 enrefg 9044 . 2 (𝐴𝑉𝐴𝐴)
2 breq2 5170 . 2 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2syl5ibcom 245 1 (𝐴𝑉 → (𝐴 = 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cen 9000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-en 9004
This theorem is referenced by:  idssen  9057  nneneqOLD  9284  onomeneqOLD  9292  pr2neOLD  10074  alephord  10144  alephdom  10150  fin23lem25  10393  alephadd  10646  aks5lem7  42157  safesnsupfidom1o  43379  rp-isfinite5  43479  sn1dom  43488  prstchom2ALT  48746
  Copyright terms: Public domain W3C validator