![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeng | Structured version Visualization version GIF version |
Description: Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
eqeng | ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 9011 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ 𝐴) | |
2 | breq2 5156 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵)) | |
3 | 1, 2 | syl5ibcom 244 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ≈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ≈ cen 8967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-en 8971 |
This theorem is referenced by: idssen 9024 nneneqOLD 9252 onomeneqOLD 9260 pr2neOLD 10036 alephord 10106 alephdom 10112 fin23lem25 10355 alephadd 10608 safesnsupfidom1o 42878 rp-isfinite5 42978 sn1dom 42987 prstchom2ALT 48163 |
Copyright terms: Public domain | W3C validator |