MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom3 Structured version   Visualization version   GIF version

Theorem dom3 8784
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. 𝐶 and 𝐷 can be read 𝐶(𝑥) and 𝐷(𝑦), as can be inferred from their distinct variable conditions. (Contributed by Mario Carneiro, 20-May-2013.)
Hypotheses
Ref Expression
dom2.1 (𝑥𝐴𝐶𝐵)
dom2.2 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
Assertion
Ref Expression
dom3 ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem dom3
StepHypRef Expression
1 dom2.1 . . 3 (𝑥𝐴𝐶𝐵)
21a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → (𝑥𝐴𝐶𝐵))
3 dom2.2 . . 3 ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦))
43a1i 11 . 2 ((𝐴𝑉𝐵𝑊) → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
5 simpl 483 . 2 ((𝐴𝑉𝐵𝑊) → 𝐴𝑉)
6 simpr 485 . 2 ((𝐴𝑉𝐵𝑊) → 𝐵𝑊)
72, 4, 5, 6dom3d 8782 1 ((𝐴𝑉𝐵𝑊) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441  df-dom 8735
This theorem is referenced by:  canth2  8917  limenpsi  8939
  Copyright terms: Public domain W3C validator