Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemf | Structured version Visualization version GIF version |
Description: Lemma for imasetpreimafvbij 44291: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbijlemf | ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | uniimaelsetpreimafv 44281 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑝 ∈ 𝑃) → ∪ (𝐹 “ 𝑝) ∈ ran 𝐹) |
3 | fnima 6461 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
4 | 3 | adantr 484 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑝 ∈ 𝑃) → (𝐹 “ 𝐴) = ran 𝐹) |
5 | 2, 4 | eleqtrrd 2855 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑝 ∈ 𝑃) → ∪ (𝐹 “ 𝑝) ∈ (𝐹 “ 𝐴)) |
6 | fundcmpsurinj.h | . 2 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
7 | 5, 6 | fmptd 6869 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cab 2735 ∃wrex 3071 {csn 4522 ∪ cuni 4798 ↦ cmpt 5112 ◡ccnv 5523 ran crn 5525 “ cima 5527 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 |
This theorem is referenced by: imasetpreimafvbijlemf1 44289 imasetpreimafvbijlemfo 44290 |
Copyright terms: Public domain | W3C validator |