![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbijlemf | Structured version Visualization version GIF version |
Description: Lemma for imasetpreimafvbij 47331: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbijlemf | ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | uniimaelsetpreimafv 47321 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑝 ∈ 𝑃) → ∪ (𝐹 “ 𝑝) ∈ ran 𝐹) |
3 | fnima 6699 | . . . 4 ⊢ (𝐹 Fn 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) | |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑝 ∈ 𝑃) → (𝐹 “ 𝐴) = ran 𝐹) |
5 | 2, 4 | eleqtrrd 2842 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑝 ∈ 𝑃) → ∪ (𝐹 “ 𝑝) ∈ (𝐹 “ 𝐴)) |
6 | fundcmpsurinj.h | . 2 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
7 | 5, 6 | fmptd 7134 | 1 ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃⟶(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 {csn 4631 ∪ cuni 4912 ↦ cmpt 5231 ◡ccnv 5688 ran crn 5690 “ cima 5692 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: imasetpreimafvbijlemf1 47329 imasetpreimafvbijlemfo 47330 |
Copyright terms: Public domain | W3C validator |