Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemf Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemf 47415
Description: Lemma for imasetpreimafvbij 47420: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemf (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemf
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21uniimaelsetpreimafv 47410 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ ran 𝐹)
3 fnima 6668 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
43adantr 480 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝐴) = ran 𝐹)
52, 4eleqtrrd 2837 . 2 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ (𝐹𝐴))
6 fundcmpsurinj.h . 2 𝐻 = (𝑝𝑃 (𝐹𝑝))
75, 6fmptd 7104 1 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2713  wrex 3060  {csn 4601   cuni 4883  cmpt 5201  ccnv 5653  ran crn 5655  cima 5657   Fn wfn 6526  wf 6527  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539
This theorem is referenced by:  imasetpreimafvbijlemf1  47418  imasetpreimafvbijlemfo  47419
  Copyright terms: Public domain W3C validator