Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemf Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemf 47275
Description: Lemma for imasetpreimafvbij 47280: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemf (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemf
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21uniimaelsetpreimafv 47270 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ ran 𝐹)
3 fnima 6710 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
43adantr 480 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝐴) = ran 𝐹)
52, 4eleqtrrd 2847 . 2 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ (𝐹𝐴))
6 fundcmpsurinj.h . 2 𝐻 = (𝑝𝑃 (𝐹𝑝))
75, 6fmptd 7148 1 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  imasetpreimafvbijlemf1  47278  imasetpreimafvbijlemfo  47279
  Copyright terms: Public domain W3C validator