Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemf Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemf 47511
Description: Lemma for imasetpreimafvbij 47516: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemf (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemf
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21uniimaelsetpreimafv 47506 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ ran 𝐹)
3 fnima 6611 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
43adantr 480 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝐴) = ran 𝐹)
52, 4eleqtrrd 2834 . 2 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ (𝐹𝐴))
6 fundcmpsurinj.h . 2 𝐻 = (𝑝𝑃 (𝐹𝑝))
75, 6fmptd 7047 1 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {csn 4573   cuni 4856  cmpt 5170  ccnv 5613  ran crn 5615  cima 5617   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  imasetpreimafvbijlemf1  47514  imasetpreimafvbijlemfo  47515
  Copyright terms: Public domain W3C validator