Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbijlemf Structured version   Visualization version   GIF version

Theorem imasetpreimafvbijlemf 46056
Description: Lemma for imasetpreimafvbij 46061: the mapping 𝐻 is a function into the range of function 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbijlemf (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)

Proof of Theorem imasetpreimafvbijlemf
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21uniimaelsetpreimafv 46051 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ ran 𝐹)
3 fnima 6678 . . . 4 (𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
43adantr 482 . . 3 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝐴) = ran 𝐹)
52, 4eleqtrrd 2837 . 2 ((𝐹 Fn 𝐴𝑝𝑃) → (𝐹𝑝) ∈ (𝐹𝐴))
6 fundcmpsurinj.h . 2 𝐻 = (𝑝𝑃 (𝐹𝑝))
75, 6fmptd 7111 1 (𝐹 Fn 𝐴𝐻:𝑃⟶(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wrex 3071  {csn 4628   cuni 4908  cmpt 5231  ccnv 5675  ran crn 5677  cima 5679   Fn wfn 6536  wf 6537  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549
This theorem is referenced by:  imasetpreimafvbijlemf1  46059  imasetpreimafvbijlemfo  46060
  Copyright terms: Public domain W3C validator