![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasetpreimafvbij | Structured version Visualization version GIF version |
Description: The mapping 𝐻 is a bijective function between the set 𝑃 of all preimages of values of function 𝐹 and the range of 𝐹. (Contributed by AV, 22-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
imasetpreimafvbij | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–1-1-onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | fundcmpsurinj.h | . . . 4 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
3 | 1, 2 | imasetpreimafvbijlemf1 47329 | . . 3 ⊢ (𝐹 Fn 𝐴 → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) |
4 | 3 | adantr 480 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–1-1→(𝐹 “ 𝐴)) |
5 | 1, 2 | imasetpreimafvbijlemfo 47330 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–onto→(𝐹 “ 𝐴)) |
6 | df-f1o 6570 | . 2 ⊢ (𝐻:𝑃–1-1-onto→(𝐹 “ 𝐴) ↔ (𝐻:𝑃–1-1→(𝐹 “ 𝐴) ∧ 𝐻:𝑃–onto→(𝐹 “ 𝐴))) | |
7 | 4, 5, 6 | sylanbrc 583 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐻:𝑃–1-1-onto→(𝐹 “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 {csn 4631 ∪ cuni 4912 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 Fn wfn 6558 –1-1→wf1 6560 –onto→wfo 6561 –1-1-onto→wf1o 6562 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: fundcmpsurbijinjpreimafv 47332 |
Copyright terms: Public domain | W3C validator |