Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasetpreimafvbij Structured version   Visualization version   GIF version

Theorem imasetpreimafvbij 45688
Description: The mapping 𝐻 is a bijective function betwen the set 𝑃 of all preimages of values of function 𝐹 and the range of 𝐹. (Contributed by AV, 22-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
imasetpreimafvbij ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃1-1-onto→(𝐹𝐴))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧,𝑝   𝑃,𝑝   𝐴,𝑝,𝑥,𝑧   𝑥,𝑃   𝑉,𝑝
Allowed substitution hints:   𝑃(𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑉(𝑥,𝑧)

Proof of Theorem imasetpreimafvbij
StepHypRef Expression
1 fundcmpsurinj.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
2 fundcmpsurinj.h . . . 4 𝐻 = (𝑝𝑃 (𝐹𝑝))
31, 2imasetpreimafvbijlemf1 45686 . . 3 (𝐹 Fn 𝐴𝐻:𝑃1-1→(𝐹𝐴))
43adantr 482 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃1-1→(𝐹𝐴))
51, 2imasetpreimafvbijlemfo 45687 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃onto→(𝐹𝐴))
6 df-f1o 6507 . 2 (𝐻:𝑃1-1-onto→(𝐹𝐴) ↔ (𝐻:𝑃1-1→(𝐹𝐴) ∧ 𝐻:𝑃onto→(𝐹𝐴)))
74, 5, 6sylanbrc 584 1 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐻:𝑃1-1-onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  {cab 2710  wrex 3070  {csn 4590   cuni 4869  cmpt 5192  ccnv 5636  cima 5640   Fn wfn 6495  1-1wf1 6497  ontowfo 6498  1-1-ontowf1o 6499  cfv 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508
This theorem is referenced by:  fundcmpsurbijinjpreimafv  45689
  Copyright terms: Public domain W3C validator