Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem3 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem3 46803
Description: Lemma 3 for fundcmpsurinj 46812. (Contributed by AV, 3-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
fundcmpsurinjlem3 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝐹,𝑝   𝑃,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑋(𝑥,𝑧)

Proof of Theorem fundcmpsurinjlem3
StepHypRef Expression
1 fundcmpsurinj.h . . 3 𝐻 = (𝑝𝑃 (𝐹𝑝))
21a1i 11 . 2 ((Fun 𝐹𝑋𝑃) → 𝐻 = (𝑝𝑃 (𝐹𝑝)))
3 imaeq2 6059 . . . 4 (𝑝 = 𝑋 → (𝐹𝑝) = (𝐹𝑋))
43unieqd 4921 . . 3 (𝑝 = 𝑋 (𝐹𝑝) = (𝐹𝑋))
54adantl 480 . 2 (((Fun 𝐹𝑋𝑃) ∧ 𝑝 = 𝑋) → (𝐹𝑝) = (𝐹𝑋))
6 simpr 483 . 2 ((Fun 𝐹𝑋𝑃) → 𝑋𝑃)
7 funimaexg 6638 . . 3 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
87uniexd 7746 . 2 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
92, 5, 6, 8fvmptd 7009 1 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3060  Vcvv 3463  {csn 4629   cuni 4908  cmpt 5231  ccnv 5676  cima 5680  Fun wfun 6541  cfv 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fv 6555
This theorem is referenced by:  imasetpreimafvbijlemfv  46805
  Copyright terms: Public domain W3C validator