![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fundcmpsurinj 46077. (Contributed by AV, 3-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
fundcmpsurinjlem3 | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝))) |
3 | imaeq2 6056 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝐹 “ 𝑝) = (𝐹 “ 𝑋)) | |
4 | 3 | unieqd 4923 | . . 3 ⊢ (𝑝 = 𝑋 → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑋)) |
5 | 4 | adantl 483 | . 2 ⊢ (((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 = 𝑋) → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑋)) |
6 | simpr 486 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
7 | funimaexg 6635 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐹 “ 𝑋) ∈ V) | |
8 | 7 | uniexd 7732 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → ∪ (𝐹 “ 𝑋) ∈ V) |
9 | 2, 5, 6, 8 | fvmptd 7006 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2710 ∃wrex 3071 Vcvv 3475 {csn 4629 ∪ cuni 4909 ↦ cmpt 5232 ◡ccnv 5676 “ cima 5680 Fun wfun 6538 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: imasetpreimafvbijlemfv 46070 |
Copyright terms: Public domain | W3C validator |