Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem3 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem3 47274
Description: Lemma 3 for fundcmpsurinj 47283. (Contributed by AV, 3-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
fundcmpsurinjlem3 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝐹,𝑝   𝑃,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑋(𝑥,𝑧)

Proof of Theorem fundcmpsurinjlem3
StepHypRef Expression
1 fundcmpsurinj.h . . 3 𝐻 = (𝑝𝑃 (𝐹𝑝))
21a1i 11 . 2 ((Fun 𝐹𝑋𝑃) → 𝐻 = (𝑝𝑃 (𝐹𝑝)))
3 imaeq2 6085 . . . 4 (𝑝 = 𝑋 → (𝐹𝑝) = (𝐹𝑋))
43unieqd 4944 . . 3 (𝑝 = 𝑋 (𝐹𝑝) = (𝐹𝑋))
54adantl 481 . 2 (((Fun 𝐹𝑋𝑃) ∧ 𝑝 = 𝑋) → (𝐹𝑝) = (𝐹𝑋))
6 simpr 484 . 2 ((Fun 𝐹𝑋𝑃) → 𝑋𝑃)
7 funimaexg 6664 . . 3 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
87uniexd 7777 . 2 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
92, 5, 6, 8fvmptd 7036 1 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cima 5703  Fun wfun 6567  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581
This theorem is referenced by:  imasetpreimafvbijlemfv  47276
  Copyright terms: Public domain W3C validator