| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma 3 for fundcmpsurinj 47414. (Contributed by AV, 3-Mar-2024.) |
| Ref | Expression |
|---|---|
| fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
| Ref | Expression |
|---|---|
| fundcmpsurinjlem3 | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fundcmpsurinj.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝))) |
| 3 | imaeq2 6030 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝐹 “ 𝑝) = (𝐹 “ 𝑋)) | |
| 4 | 3 | unieqd 4887 | . . 3 ⊢ (𝑝 = 𝑋 → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑋)) |
| 5 | 4 | adantl 481 | . 2 ⊢ (((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 = 𝑋) → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑋)) |
| 6 | simpr 484 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
| 7 | funimaexg 6606 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐹 “ 𝑋) ∈ V) | |
| 8 | 7 | uniexd 7721 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → ∪ (𝐹 “ 𝑋) ∈ V) |
| 9 | 2, 5, 6, 8 | fvmptd 6978 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: imasetpreimafvbijlemfv 47407 |
| Copyright terms: Public domain | W3C validator |