Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem3 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem3 47510
Description: Lemma 3 for fundcmpsurinj 47519. (Contributed by AV, 3-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
fundcmpsurinjlem3 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝐹,𝑝   𝑃,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑋(𝑥,𝑧)

Proof of Theorem fundcmpsurinjlem3
StepHypRef Expression
1 fundcmpsurinj.h . . 3 𝐻 = (𝑝𝑃 (𝐹𝑝))
21a1i 11 . 2 ((Fun 𝐹𝑋𝑃) → 𝐻 = (𝑝𝑃 (𝐹𝑝)))
3 imaeq2 6004 . . . 4 (𝑝 = 𝑋 → (𝐹𝑝) = (𝐹𝑋))
43unieqd 4869 . . 3 (𝑝 = 𝑋 (𝐹𝑝) = (𝐹𝑋))
54adantl 481 . 2 (((Fun 𝐹𝑋𝑃) ∧ 𝑝 = 𝑋) → (𝐹𝑝) = (𝐹𝑋))
6 simpr 484 . 2 ((Fun 𝐹𝑋𝑃) → 𝑋𝑃)
7 funimaexg 6568 . . 3 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
87uniexd 7675 . 2 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
92, 5, 6, 8fvmptd 6936 1 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  {csn 4573   cuni 4856  cmpt 5170  ccnv 5613  cima 5617  Fun wfun 6475  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489
This theorem is referenced by:  imasetpreimafvbijlemfv  47512
  Copyright terms: Public domain W3C validator