Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fundcmpsurinjlem3 Structured version   Visualization version   GIF version

Theorem fundcmpsurinjlem3 44852
Description: Lemma 3 for fundcmpsurinj 44861. (Contributed by AV, 3-Mar-2024.)
Hypotheses
Ref Expression
fundcmpsurinj.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
fundcmpsurinj.h 𝐻 = (𝑝𝑃 (𝐹𝑝))
Assertion
Ref Expression
fundcmpsurinjlem3 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝐹,𝑝   𝑃,𝑝   𝑋,𝑝
Allowed substitution hints:   𝐴(𝑝)   𝑃(𝑥,𝑧)   𝐻(𝑥,𝑧,𝑝)   𝑋(𝑥,𝑧)

Proof of Theorem fundcmpsurinjlem3
StepHypRef Expression
1 fundcmpsurinj.h . . 3 𝐻 = (𝑝𝑃 (𝐹𝑝))
21a1i 11 . 2 ((Fun 𝐹𝑋𝑃) → 𝐻 = (𝑝𝑃 (𝐹𝑝)))
3 imaeq2 5965 . . . 4 (𝑝 = 𝑋 → (𝐹𝑝) = (𝐹𝑋))
43unieqd 4853 . . 3 (𝑝 = 𝑋 (𝐹𝑝) = (𝐹𝑋))
54adantl 482 . 2 (((Fun 𝐹𝑋𝑃) ∧ 𝑝 = 𝑋) → (𝐹𝑝) = (𝐹𝑋))
6 simpr 485 . 2 ((Fun 𝐹𝑋𝑃) → 𝑋𝑃)
7 funimaexg 6520 . . 3 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
87uniexd 7595 . 2 ((Fun 𝐹𝑋𝑃) → (𝐹𝑋) ∈ V)
92, 5, 6, 8fvmptd 6882 1 ((Fun 𝐹𝑋𝑃) → (𝐻𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wrex 3065  Vcvv 3432  {csn 4561   cuni 4839  cmpt 5157  ccnv 5588  cima 5592  Fun wfun 6427  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441
This theorem is referenced by:  imasetpreimafvbijlemfv  44854
  Copyright terms: Public domain W3C validator