![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fundcmpsurinjlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for fundcmpsurinj 46672. (Contributed by AV, 3-Mar-2024.) |
Ref | Expression |
---|---|
fundcmpsurinj.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
fundcmpsurinj.h | ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) |
Ref | Expression |
---|---|
fundcmpsurinjlem3 | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fundcmpsurinj.h | . . 3 ⊢ 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝)) | |
2 | 1 | a1i 11 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → 𝐻 = (𝑝 ∈ 𝑃 ↦ ∪ (𝐹 “ 𝑝))) |
3 | imaeq2 6053 | . . . 4 ⊢ (𝑝 = 𝑋 → (𝐹 “ 𝑝) = (𝐹 “ 𝑋)) | |
4 | 3 | unieqd 4916 | . . 3 ⊢ (𝑝 = 𝑋 → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑋)) |
5 | 4 | adantl 481 | . 2 ⊢ (((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) ∧ 𝑝 = 𝑋) → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑋)) |
6 | simpr 484 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → 𝑋 ∈ 𝑃) | |
7 | funimaexg 6633 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐹 “ 𝑋) ∈ V) | |
8 | 7 | uniexd 7741 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → ∪ (𝐹 “ 𝑋) ∈ V) |
9 | 2, 5, 6, 8 | fvmptd 7006 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝑃) → (𝐻‘𝑋) = ∪ (𝐹 “ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2704 ∃wrex 3065 Vcvv 3469 {csn 4624 ∪ cuni 4903 ↦ cmpt 5225 ◡ccnv 5671 “ cima 5675 Fun wfun 6536 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: imasetpreimafvbijlemfv 46665 |
Copyright terms: Public domain | W3C validator |