| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for imasubc 49262. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubclem1.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| imasubclem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| imasubclem1 | ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | cnvexg 7854 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → ◡𝐹 ∈ V) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝐹 ∈ V) |
| 4 | 3 | imaexd 7846 | . . 3 ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ V) |
| 5 | imasubclem1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | cnvexg 7854 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → ◡𝐺 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝐺 ∈ V) |
| 8 | 7 | imaexd 7846 | . . 3 ⊢ (𝜑 → (◡𝐺 “ 𝐵) ∈ V) |
| 9 | 4, 8 | xpexd 7684 | . 2 ⊢ (𝜑 → ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵)) ∈ V) |
| 10 | fvex 6835 | . . . 4 ⊢ (𝐻‘𝐶) ∈ V | |
| 11 | 10 | imaex 7844 | . . 3 ⊢ ((𝐻‘𝐶) “ 𝐷) ∈ V |
| 12 | 11 | rgenw 3051 | . 2 ⊢ ∀𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V |
| 13 | iunexg 7895 | . 2 ⊢ ((((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵)) ∈ V ∧ ∀𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) | |
| 14 | 9, 12, 13 | sylancl 586 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∪ ciun 4939 × cxp 5612 ◡ccnv 5613 “ cima 5617 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: imasubclem2 49216 imasubclem3 49217 |
| Copyright terms: Public domain | W3C validator |