| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for imasubc 49146. (Contributed by Zhi Wang, 6-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubclem1.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| imasubclem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| imasubclem1 | ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | cnvexg 7857 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → ◡𝐹 ∈ V) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝐹 ∈ V) |
| 4 | 3 | imaexd 7849 | . . 3 ⊢ (𝜑 → (◡𝐹 “ 𝐴) ∈ V) |
| 5 | imasubclem1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 6 | cnvexg 7857 | . . . . 5 ⊢ (𝐺 ∈ 𝑊 → ◡𝐺 ∈ V) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝐺 ∈ V) |
| 8 | 7 | imaexd 7849 | . . 3 ⊢ (𝜑 → (◡𝐺 “ 𝐵) ∈ V) |
| 9 | 4, 8 | xpexd 7687 | . 2 ⊢ (𝜑 → ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵)) ∈ V) |
| 10 | fvex 6835 | . . . 4 ⊢ (𝐻‘𝐶) ∈ V | |
| 11 | 10 | imaex 7847 | . . 3 ⊢ ((𝐻‘𝐶) “ 𝐷) ∈ V |
| 12 | 11 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V |
| 13 | iunexg 7898 | . 2 ⊢ ((((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵)) ∈ V ∧ ∀𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) | |
| 14 | 9, 12, 13 | sylancl 586 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∪ ciun 4941 × cxp 5617 ◡ccnv 5618 “ cima 5622 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fv 6490 |
| This theorem is referenced by: imasubclem2 49100 imasubclem3 49101 |
| Copyright terms: Public domain | W3C validator |