| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfu2nda | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfu2nda.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfu2nda.d | ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) |
| idfu2nda.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| idfu2nda.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfu2nda.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| idfu2nda.h | ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐷)𝑌)) |
| Ref | Expression |
|---|---|
| idfu2nda | ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | idfu2nda.d | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 4 | 1, 3 | eqeltrrid 2834 | . . . 4 ⊢ (𝜑 → (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 5 | idfurcl 49091 | . . . 4 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2730 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | idfu2nda.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | idfu2nda.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
| 10 | 1, 3, 9 | idfu1stalem 49093 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| 11 | 8, 10 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 12 | idfu2nda.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 12, 10 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 14 | 1, 2, 6, 7, 11, 13 | idfu2nd 17846 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋(Hom ‘𝐶)𝑌))) |
| 15 | idfu2nda.h | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐷)𝑌)) | |
| 16 | eqid 2730 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 17 | 1 | idfucl 17850 | . . . . . . . 8 ⊢ (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶)) |
| 18 | 6, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (𝐶 Func 𝐶)) |
| 19 | 18 | func1st2nd 49069 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐼)(𝐶 Func 𝐶)(2nd ‘𝐼)) |
| 20 | 3 | func1st2nd 49069 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 21 | 19, 20 | funchomf 49090 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 22 | 2, 7, 16, 21, 11, 13 | homfeqval 17665 | . . . 4 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
| 23 | 15, 22 | eqtr4d 2768 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐶)𝑌)) |
| 24 | 23 | reseq2d 5953 | . 2 ⊢ (𝜑 → ( I ↾ 𝐻) = ( I ↾ (𝑋(Hom ‘𝐶)𝑌))) |
| 25 | 14, 24 | eqtr4d 2768 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5535 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 Hom chom 17238 Catccat 17632 Func cfunc 17823 idfunccidfu 17824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ixp 8874 df-cat 17636 df-cid 17637 df-homf 17638 df-func 17827 df-idfu 17828 |
| This theorem is referenced by: imaidfu 49103 idfth 49151 |
| Copyright terms: Public domain | W3C validator |