| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfu2nda | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfu2nda.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfu2nda.d | ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) |
| idfu2nda.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| idfu2nda.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfu2nda.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| idfu2nda.h | ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐷)𝑌)) |
| Ref | Expression |
|---|---|
| idfu2nda | ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | idfu2nda.d | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 4 | 1, 3 | eqeltrrid 2836 | . . . 4 ⊢ (𝜑 → (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 5 | idfurcl 49198 | . . . 4 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | eqid 2731 | . . 3 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 8 | idfu2nda.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | idfu2nda.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
| 10 | 1, 3, 9 | idfu1stalem 49200 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| 11 | 8, 10 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 12 | idfu2nda.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 13 | 12, 10 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 14 | 1, 2, 6, 7, 11, 13 | idfu2nd 17784 | . 2 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋(Hom ‘𝐶)𝑌))) |
| 15 | idfu2nda.h | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐷)𝑌)) | |
| 16 | eqid 2731 | . . . . 5 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 17 | 1 | idfucl 17788 | . . . . . . . 8 ⊢ (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶)) |
| 18 | 6, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (𝐶 Func 𝐶)) |
| 19 | 18 | func1st2nd 49176 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐼)(𝐶 Func 𝐶)(2nd ‘𝐼)) |
| 20 | 3 | func1st2nd 49176 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 21 | 19, 20 | funchomf 49197 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) |
| 22 | 2, 7, 16, 21, 11, 13 | homfeqval 17603 | . . . 4 ⊢ (𝜑 → (𝑋(Hom ‘𝐶)𝑌) = (𝑋(Hom ‘𝐷)𝑌)) |
| 23 | 15, 22 | eqtr4d 2769 | . . 3 ⊢ (𝜑 → 𝐻 = (𝑋(Hom ‘𝐶)𝑌)) |
| 24 | 23 | reseq2d 5927 | . 2 ⊢ (𝜑 → ( I ↾ 𝐻) = ( I ↾ (𝑋(Hom ‘𝐶)𝑌))) |
| 25 | 14, 24 | eqtr4d 2769 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 I cid 5508 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 Hom chom 17172 Catccat 17570 Func cfunc 17761 idfunccidfu 17762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ixp 8822 df-cat 17574 df-cid 17575 df-homf 17576 df-func 17765 df-idfu 17766 |
| This theorem is referenced by: imaidfu 49210 idfth 49258 |
| Copyright terms: Public domain | W3C validator |