Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubclem2 Structured version   Visualization version   GIF version

Theorem imasubclem2 49216
Description: Lemma for imasubc 49262. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubclem1.f (𝜑𝐹𝑉)
imasubclem1.g (𝜑𝐺𝑊)
imasubclem2.k 𝐾 = (𝑦𝑋, 𝑧𝑌 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷))
Assertion
Ref Expression
imasubclem2 (𝜑𝐾 Fn (𝑋 × 𝑌))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑦,𝑋,𝑧   𝑦,𝑌,𝑧   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑦,𝑧)   𝐵(𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)   𝐹(𝑦,𝑧)   𝐺(𝑦,𝑧)   𝐻(𝑥,𝑦,𝑧)   𝐾(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem imasubclem2
StepHypRef Expression
1 imasubclem1.f . . . . 5 (𝜑𝐹𝑉)
2 imasubclem1.g . . . . 5 (𝜑𝐺𝑊)
31, 2imasubclem1 49215 . . . 4 (𝜑 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷) ∈ V)
43adantr 480 . . 3 ((𝜑 ∧ (𝑦𝑋𝑧𝑌)) → 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷) ∈ V)
54ralrimivva 3175 . 2 (𝜑 → ∀𝑦𝑋𝑧𝑌 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷) ∈ V)
6 imasubclem2.k . . 3 𝐾 = (𝑦𝑋, 𝑧𝑌 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷))
76fnmpo 8001 . 2 (∀𝑦𝑋𝑧𝑌 𝑥 ∈ ((𝐹𝐴) × (𝐺𝐵))((𝐻𝐶) “ 𝐷) ∈ V → 𝐾 Fn (𝑋 × 𝑌))
85, 7syl 17 1 (𝜑𝐾 Fn (𝑋 × 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436   ciun 4939   × cxp 5612  ccnv 5613  cima 5617   Fn wfn 6476  cfv 6481  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922
This theorem is referenced by:  imaidfu  49221  imasubc  49262  imassc  49264  imasubc3  49267
  Copyright terms: Public domain W3C validator