| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubclem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for imasubc 48961. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubclem1.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| imasubclem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| imasubclem2.k | ⊢ 𝐾 = (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷)) |
| Ref | Expression |
|---|---|
| imasubclem2 | ⊢ (𝜑 → 𝐾 Fn (𝑋 × 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem1.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | imasubclem1.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 3 | 1, 2 | imasubclem1 48956 | . . . 4 ⊢ (𝜑 → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) → ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| 5 | 4 | ralrimivva 3185 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑌 ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| 6 | imasubclem2.k | . . 3 ⊢ 𝐾 = (𝑦 ∈ 𝑋, 𝑧 ∈ 𝑌 ↦ ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷)) | |
| 7 | 6 | fnmpo 8063 | . 2 ⊢ (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑌 ∪ 𝑥 ∈ ((◡𝐹 “ 𝐴) × (◡𝐺 “ 𝐵))((𝐻‘𝐶) “ 𝐷) ∈ V → 𝐾 Fn (𝑋 × 𝑌)) |
| 8 | 5, 7 | syl 17 | 1 ⊢ (𝜑 → 𝐾 Fn (𝑋 × 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3457 ∪ ciun 4965 × cxp 5650 ◡ccnv 5651 “ cima 5655 Fn wfn 6523 ‘cfv 6528 ∈ cmpo 7402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-fv 6536 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 |
| This theorem is referenced by: imasubc 48961 imassc 48963 imasubc3 48966 |
| Copyright terms: Public domain | W3C validator |