Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubclem3 Structured version   Visualization version   GIF version

Theorem imasubclem3 48958
Description: Lemma for imasubc 48961. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubclem1.f (𝜑𝐹𝑉)
imasubclem1.g (𝜑𝐺𝑊)
imasubclem3.x (𝜑𝑋𝐴)
imasubclem3.y (𝜑𝑌𝐵)
imasubclem3.k 𝐾 = (𝑥𝐴, 𝑦𝐵 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷))
Assertion
Ref Expression
imasubclem3 (𝜑 → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑦,𝐴,𝑥   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑦,𝐹,𝑧,𝑥   𝑦,𝐺,𝑧   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)   𝐶(𝑧)   𝐷(𝑧)   𝐻(𝑧)   𝐾(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem imasubclem3
StepHypRef Expression
1 imasubclem3.x . 2 (𝜑𝑋𝐴)
2 imasubclem3.y . 2 (𝜑𝑌𝐵)
3 imasubclem1.f . . 3 (𝜑𝐹𝑉)
4 imasubclem1.g . . 3 (𝜑𝐺𝑊)
53, 4imasubclem1 48956 . 2 (𝜑 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷) ∈ V)
6 simpl 482 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
76sneqd 4611 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥} = {𝑋})
87imaeq2d 6045 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋}))
9 simpr 484 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
109sneqd 4611 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑦} = {𝑌})
1110imaeq2d 6045 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐺 “ {𝑦}) = (𝐺 “ {𝑌}))
128, 11xpeq12d 5683 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦})) = ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌})))
1312iuneq1d 4993 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
14 imasubclem3.k . . 3 𝐾 = (𝑥𝐴, 𝑦𝐵 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷))
1513, 14ovmpoga 7556 . 2 ((𝑋𝐴𝑌𝐵 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷) ∈ V) → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
161, 2, 5, 15syl3anc 1372 1 (𝜑 → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  {csn 4599   ciun 4965   × cxp 5650  ccnv 5651  cima 5655  cfv 6528  (class class class)co 7400  cmpo 7402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405
This theorem is referenced by:  imasubc3lem2  48960  imasubc  48961  imassc  48963  imaid  48964
  Copyright terms: Public domain W3C validator