Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubclem3 Structured version   Visualization version   GIF version

Theorem imasubclem3 49088
Description: Lemma for imasubc 49133. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubclem1.f (𝜑𝐹𝑉)
imasubclem1.g (𝜑𝐺𝑊)
imasubclem3.x (𝜑𝑋𝐴)
imasubclem3.y (𝜑𝑌𝐵)
imasubclem3.k 𝐾 = (𝑥𝐴, 𝑦𝐵 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷))
Assertion
Ref Expression
imasubclem3 (𝜑 → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑦,𝐴,𝑥   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑦,𝐹,𝑧,𝑥   𝑦,𝐺,𝑧   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)   𝐶(𝑧)   𝐷(𝑧)   𝐻(𝑧)   𝐾(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem imasubclem3
StepHypRef Expression
1 imasubclem3.x . 2 (𝜑𝑋𝐴)
2 imasubclem3.y . 2 (𝜑𝑌𝐵)
3 imasubclem1.f . . 3 (𝜑𝐹𝑉)
4 imasubclem1.g . . 3 (𝜑𝐺𝑊)
53, 4imasubclem1 49086 . 2 (𝜑 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷) ∈ V)
6 simpl 482 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
76sneqd 4597 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥} = {𝑋})
87imaeq2d 6020 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋}))
9 simpr 484 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
109sneqd 4597 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑦} = {𝑌})
1110imaeq2d 6020 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐺 “ {𝑦}) = (𝐺 “ {𝑌}))
128, 11xpeq12d 5662 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦})) = ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌})))
1312iuneq1d 4979 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
14 imasubclem3.k . . 3 𝐾 = (𝑥𝐴, 𝑦𝐵 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷))
1513, 14ovmpoga 7523 . 2 ((𝑋𝐴𝑌𝐵 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷) ∈ V) → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
161, 2, 5, 15syl3anc 1373 1 (𝜑 → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  {csn 4585   ciun 4951   × cxp 5629  ccnv 5630  cima 5634  cfv 6499  (class class class)co 7369  cmpo 7371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374
This theorem is referenced by:  imaf1hom  49090  imasubc  49133  imassc  49135  imaid  49136
  Copyright terms: Public domain W3C validator