| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for imasubc 49130. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubclem1.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| imasubclem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| imasubclem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| imasubclem3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| imasubclem3.k | ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) |
| Ref | Expression |
|---|---|
| imasubclem3 | ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | imasubclem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | imasubclem1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | imasubclem1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 5 | 3, 4 | imasubclem1 49083 | . 2 ⊢ (𝜑 → ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| 6 | simpl 482 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 7 | 6 | sneqd 4603 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑥} = {𝑋}) |
| 8 | 7 | imaeq2d 6033 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝑋})) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 10 | 9 | sneqd 4603 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑦} = {𝑌}) |
| 11 | 10 | imaeq2d 6033 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {𝑌})) |
| 12 | 8, 11 | xpeq12d 5671 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦})) = ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))) |
| 13 | 12 | iuneq1d 4985 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| 14 | imasubclem3.k | . . 3 ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) | |
| 15 | 13, 14 | ovmpoga 7545 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷) ∈ V) → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| 16 | 1, 2, 5, 15 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4591 ∪ ciun 4957 × cxp 5638 ◡ccnv 5639 “ cima 5643 ‘cfv 6513 (class class class)co 7389 ∈ cmpo 7391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 |
| This theorem is referenced by: imaf1hom 49087 imasubc 49130 imassc 49132 imaid 49133 |
| Copyright terms: Public domain | W3C validator |