| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for imasubc 49146. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubclem1.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| imasubclem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| imasubclem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| imasubclem3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| imasubclem3.k | ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) |
| Ref | Expression |
|---|---|
| imasubclem3 | ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | imasubclem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | imasubclem1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | imasubclem1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 5 | 3, 4 | imasubclem1 49099 | . 2 ⊢ (𝜑 → ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| 6 | simpl 482 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 7 | 6 | sneqd 4589 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑥} = {𝑋}) |
| 8 | 7 | imaeq2d 6011 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝑋})) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 10 | 9 | sneqd 4589 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑦} = {𝑌}) |
| 11 | 10 | imaeq2d 6011 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {𝑌})) |
| 12 | 8, 11 | xpeq12d 5650 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦})) = ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))) |
| 13 | 12 | iuneq1d 4969 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| 14 | imasubclem3.k | . . 3 ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) | |
| 15 | 13, 14 | ovmpoga 7503 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷) ∈ V) → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| 16 | 1, 2, 5, 15 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 ∪ ciun 4941 × cxp 5617 ◡ccnv 5618 “ cima 5622 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: imaf1hom 49103 imasubc 49146 imassc 49148 imaid 49149 |
| Copyright terms: Public domain | W3C validator |