Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasubclem3 Structured version   Visualization version   GIF version

Theorem imasubclem3 49217
Description: Lemma for imasubc 49262. (Contributed by Zhi Wang, 7-Nov-2025.)
Hypotheses
Ref Expression
imasubclem1.f (𝜑𝐹𝑉)
imasubclem1.g (𝜑𝐺𝑊)
imasubclem3.x (𝜑𝑋𝐴)
imasubclem3.y (𝜑𝑌𝐵)
imasubclem3.k 𝐾 = (𝑥𝐴, 𝑦𝐵 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷))
Assertion
Ref Expression
imasubclem3 (𝜑 → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝑦,𝐴,𝑥   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑦,𝐹,𝑧,𝑥   𝑦,𝐺,𝑧   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑧)   𝐵(𝑧)   𝐶(𝑧)   𝐷(𝑧)   𝐻(𝑧)   𝐾(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem imasubclem3
StepHypRef Expression
1 imasubclem3.x . 2 (𝜑𝑋𝐴)
2 imasubclem3.y . 2 (𝜑𝑌𝐵)
3 imasubclem1.f . . 3 (𝜑𝐹𝑉)
4 imasubclem1.g . . 3 (𝜑𝐺𝑊)
53, 4imasubclem1 49215 . 2 (𝜑 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷) ∈ V)
6 simpl 482 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
76sneqd 4585 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥} = {𝑋})
87imaeq2d 6008 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐹 “ {𝑥}) = (𝐹 “ {𝑋}))
9 simpr 484 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
109sneqd 4585 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑦} = {𝑌})
1110imaeq2d 6008 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐺 “ {𝑦}) = (𝐺 “ {𝑌}))
128, 11xpeq12d 5645 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦})) = ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌})))
1312iuneq1d 4967 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
14 imasubclem3.k . . 3 𝐾 = (𝑥𝐴, 𝑦𝐵 𝑧 ∈ ((𝐹 “ {𝑥}) × (𝐺 “ {𝑦}))((𝐻𝐶) “ 𝐷))
1513, 14ovmpoga 7500 . 2 ((𝑋𝐴𝑌𝐵 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷) ∈ V) → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
161, 2, 5, 15syl3anc 1373 1 (𝜑 → (𝑋𝐾𝑌) = 𝑧 ∈ ((𝐹 “ {𝑋}) × (𝐺 “ {𝑌}))((𝐻𝐶) “ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573   ciun 4939   × cxp 5612  ccnv 5613  cima 5617  cfv 6481  (class class class)co 7346  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  imaf1hom  49219  imasubc  49262  imassc  49264  imaid  49265
  Copyright terms: Public domain W3C validator