| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubclem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for imasubc 48961. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubclem1.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| imasubclem1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| imasubclem3.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| imasubclem3.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| imasubclem3.k | ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) |
| Ref | Expression |
|---|---|
| imasubclem3 | ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubclem3.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | imasubclem3.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | imasubclem1.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 4 | imasubclem1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 5 | 3, 4 | imasubclem1 48956 | . 2 ⊢ (𝜑 → ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷) ∈ V) |
| 6 | simpl 482 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑥 = 𝑋) | |
| 7 | 6 | sneqd 4611 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑥} = {𝑋}) |
| 8 | 7 | imaeq2d 6045 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (◡𝐹 “ {𝑥}) = (◡𝐹 “ {𝑋})) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → 𝑦 = 𝑌) | |
| 10 | 9 | sneqd 4611 | . . . . . 6 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑦} = {𝑌}) |
| 11 | 10 | imaeq2d 6045 | . . . . 5 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (◡𝐺 “ {𝑦}) = (◡𝐺 “ {𝑌})) |
| 12 | 8, 11 | xpeq12d 5683 | . . . 4 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦})) = ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))) |
| 13 | 12 | iuneq1d 4993 | . . 3 ⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| 14 | imasubclem3.k | . . 3 ⊢ 𝐾 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐺 “ {𝑦}))((𝐻‘𝐶) “ 𝐷)) | |
| 15 | 13, 14 | ovmpoga 7556 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷) ∈ V) → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| 16 | 1, 2, 5, 15 | syl3anc 1372 | 1 ⊢ (𝜑 → (𝑋𝐾𝑌) = ∪ 𝑧 ∈ ((◡𝐹 “ {𝑋}) × (◡𝐺 “ {𝑌}))((𝐻‘𝐶) “ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {csn 4599 ∪ ciun 4965 × cxp 5650 ◡ccnv 5651 “ cima 5655 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 |
| This theorem is referenced by: imasubc3lem2 48960 imasubc 48961 imassc 48963 imaid 48964 |
| Copyright terms: Public domain | W3C validator |