Proof of Theorem divgcdodd
Step | Hyp | Ref
| Expression |
1 | | n2dvds1 16005 |
. . . 4
⊢ ¬ 2
∥ 1 |
2 | | 2z 12282 |
. . . . . . 7
⊢ 2 ∈
ℤ |
3 | | nnz 12272 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
4 | | nnz 12272 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
5 | | gcddvds 16138 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
6 | 3, 4, 5 | syl2an 595 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
7 | 6 | simpld 494 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
8 | | gcdnncl 16142 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
9 | 8 | nnzd 12354 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ) |
10 | 8 | nnne0d 11953 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0) |
11 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈
ℤ) |
12 | | dvdsval2 15894 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
13 | 9, 10, 11, 12 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
14 | 7, 13 | mpbid 231 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) |
15 | 6 | simprd 495 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
16 | 4 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈
ℤ) |
17 | | dvdsval2 15894 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
18 | 9, 10, 16, 17 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
19 | 15, 18 | mpbid 231 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) |
20 | | dvdsgcdb 16181 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ (𝐴 /
(𝐴 gcd 𝐵)) ∈ ℤ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) → ((2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))) |
21 | 2, 14, 19, 20 | mp3an2i 1464 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2
∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))))) |
22 | | gcddiv 16187 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))) |
23 | 11, 16, 8, 6, 22 | syl31anc 1371 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))) |
24 | 8 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ) |
25 | 24, 10 | dividd 11679 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1) |
26 | 23, 25 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) |
27 | 26 | breq2d 5082 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2
∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) ↔ 2 ∥ 1)) |
28 | 27 | biimpd 228 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2
∥ ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1)) |
29 | 21, 28 | sylbid 239 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((2
∥ (𝐴 / (𝐴 gcd 𝐵)) ∧ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) → 2 ∥ 1)) |
30 | 29 | expdimp 452 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))) → (2 ∥ (𝐵 / (𝐴 gcd 𝐵)) → 2 ∥ 1)) |
31 | 1, 30 | mtoi 198 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 2 ∥
(𝐴 / (𝐴 gcd 𝐵))) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) |
32 | 31 | ex 412 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (2
∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) |
33 | | imor 849 |
. 2
⊢ ((2
∥ (𝐴 / (𝐴 gcd 𝐵)) → ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵))) ↔ (¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) |
34 | 32, 33 | sylib 217 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ 2
∥ (𝐴 / (𝐴 gcd 𝐵)) ∨ ¬ 2 ∥ (𝐵 / (𝐴 gcd 𝐵)))) |