![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffin7-2 | Structured version Visualization version GIF version |
Description: Class form of isfin7-2 10393. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
dffin7-2 | ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 850 | . . 3 ⊢ ((𝑥 ∈ dom card → 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) | |
2 | isfin7-2 10393 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin))) | |
3 | 2 | elv 3474 | . . 3 ⊢ (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin)) |
4 | elun 4143 | . . . 4 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card))) | |
5 | orcom 867 | . . . 4 ⊢ ((𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card)) ↔ (𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin)) | |
6 | vex 3472 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | eldif 3953 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card)) | |
8 | 6, 7 | mpbiran 706 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ ¬ 𝑥 ∈ dom card) |
9 | 8 | orbi1i 910 | . . . 4 ⊢ ((𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
10 | 4, 5, 9 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
11 | 1, 3, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ FinVII ↔ 𝑥 ∈ (Fin ∪ (V ∖ dom card))) |
12 | 11 | eqriv 2723 | 1 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∖ cdif 3940 ∪ cun 3941 dom cdm 5669 Fincfn 8941 cardccrd 9932 FinVIIcfin7 10281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-om 7853 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-fin7 10288 |
This theorem is referenced by: dfacfin7 10396 |
Copyright terms: Public domain | W3C validator |