MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffin7-2 Structured version   Visualization version   GIF version

Theorem dffin7-2 10375
Description: Class form of isfin7-2 10373. (Contributed by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
dffin7-2 FinVII = (Fin ∪ (V ∖ dom card))

Proof of Theorem dffin7-2
StepHypRef Expression
1 imor 851 . . 3 ((𝑥 ∈ dom card → 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin))
2 isfin7-2 10373 . . . 4 (𝑥 ∈ V → (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin)))
32elv 3479 . . 3 (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin))
4 elun 4144 . . . 4 (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card)))
5 orcom 868 . . . 4 ((𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card)) ↔ (𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin))
6 vex 3477 . . . . . 6 𝑥 ∈ V
7 eldif 3954 . . . . . 6 (𝑥 ∈ (V ∖ dom card) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card))
86, 7mpbiran 707 . . . . 5 (𝑥 ∈ (V ∖ dom card) ↔ ¬ 𝑥 ∈ dom card)
98orbi1i 912 . . . 4 ((𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin))
104, 5, 93bitri 296 . . 3 (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin))
111, 3, 103bitr4i 302 . 2 (𝑥 ∈ FinVII𝑥 ∈ (Fin ∪ (V ∖ dom card)))
1211eqriv 2728 1 FinVII = (Fin ∪ (V ∖ dom card))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 845   = wceq 1541  wcel 2106  Vcvv 3473  cdif 3941  cun 3942  dom cdm 5669  Fincfn 8922  cardccrd 9912  FinVIIcfin7 10261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-om 7839  df-1o 8448  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-card 9916  df-fin7 10268
This theorem is referenced by:  dfacfin7  10376
  Copyright terms: Public domain W3C validator