| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffin7-2 | Structured version Visualization version GIF version | ||
| Description: Class form of isfin7-2 10325. (Contributed by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| dffin7-2 | ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imor 853 | . . 3 ⊢ ((𝑥 ∈ dom card → 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) | |
| 2 | isfin7-2 10325 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin))) | |
| 3 | 2 | elv 3449 | . . 3 ⊢ (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin)) |
| 4 | elun 4112 | . . . 4 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card))) | |
| 5 | orcom 870 | . . . 4 ⊢ ((𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card)) ↔ (𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin)) | |
| 6 | vex 3448 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 7 | eldif 3921 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card)) | |
| 8 | 6, 7 | mpbiran 709 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ ¬ 𝑥 ∈ dom card) |
| 9 | 8 | orbi1i 913 | . . . 4 ⊢ ((𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
| 10 | 4, 5, 9 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
| 11 | 1, 3, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ FinVII ↔ 𝑥 ∈ (Fin ∪ (V ∖ dom card))) |
| 12 | 11 | eqriv 2726 | 1 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 dom cdm 5631 Fincfn 8895 cardccrd 9864 FinVIIcfin7 10213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-card 9868 df-fin7 10220 |
| This theorem is referenced by: dfacfin7 10328 |
| Copyright terms: Public domain | W3C validator |