![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffin7-2 | Structured version Visualization version GIF version |
Description: Class form of isfin7-2 10433. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
dffin7-2 | ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 853 | . . 3 ⊢ ((𝑥 ∈ dom card → 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) | |
2 | isfin7-2 10433 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin))) | |
3 | 2 | elv 3482 | . . 3 ⊢ (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin)) |
4 | elun 4162 | . . . 4 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card))) | |
5 | orcom 870 | . . . 4 ⊢ ((𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card)) ↔ (𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin)) | |
6 | vex 3481 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | eldif 3972 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card)) | |
8 | 6, 7 | mpbiran 709 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ ¬ 𝑥 ∈ dom card) |
9 | 8 | orbi1i 913 | . . . 4 ⊢ ((𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
10 | 4, 5, 9 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
11 | 1, 3, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ FinVII ↔ 𝑥 ∈ (Fin ∪ (V ∖ dom card))) |
12 | 11 | eqriv 2731 | 1 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∖ cdif 3959 ∪ cun 3960 dom cdm 5688 Fincfn 8983 cardccrd 9972 FinVIIcfin7 10321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-om 7887 df-1o 8504 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-card 9976 df-fin7 10328 |
This theorem is referenced by: dfacfin7 10436 |
Copyright terms: Public domain | W3C validator |