![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dffin7-2 | Structured version Visualization version GIF version |
Description: Class form of isfin7-2 10429. (Contributed by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
dffin7-2 | ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor 851 | . . 3 ⊢ ((𝑥 ∈ dom card → 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) | |
2 | isfin7-2 10429 | . . . 4 ⊢ (𝑥 ∈ V → (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin))) | |
3 | 2 | elv 3479 | . . 3 ⊢ (𝑥 ∈ FinVII ↔ (𝑥 ∈ dom card → 𝑥 ∈ Fin)) |
4 | elun 4149 | . . . 4 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card))) | |
5 | orcom 868 | . . . 4 ⊢ ((𝑥 ∈ Fin ∨ 𝑥 ∈ (V ∖ dom card)) ↔ (𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin)) | |
6 | vex 3477 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | eldif 3959 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ dom card)) | |
8 | 6, 7 | mpbiran 707 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ dom card) ↔ ¬ 𝑥 ∈ dom card) |
9 | 8 | orbi1i 911 | . . . 4 ⊢ ((𝑥 ∈ (V ∖ dom card) ∨ 𝑥 ∈ Fin) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
10 | 4, 5, 9 | 3bitri 296 | . . 3 ⊢ (𝑥 ∈ (Fin ∪ (V ∖ dom card)) ↔ (¬ 𝑥 ∈ dom card ∨ 𝑥 ∈ Fin)) |
11 | 1, 3, 10 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ FinVII ↔ 𝑥 ∈ (Fin ∪ (V ∖ dom card))) |
12 | 11 | eqriv 2725 | 1 ⊢ FinVII = (Fin ∪ (V ∖ dom card)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∖ cdif 3946 ∪ cun 3947 dom cdm 5682 Fincfn 8972 cardccrd 9968 FinVIIcfin7 10317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-om 7879 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-card 9972 df-fin7 10324 |
This theorem is referenced by: dfacfin7 10432 |
Copyright terms: Public domain | W3C validator |