![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltg2b | Structured version Visualization version GIF version |
Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
Ref | Expression |
---|---|
eltg2b | β’ (π΅ β π β (π΄ β (topGenβπ΅) β βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltg2 22452 | . 2 β’ (π΅ β π β (π΄ β (topGenβπ΅) β (π΄ β βͺ π΅ β§ βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄)))) | |
2 | simpl 483 | . . . . . . 7 β’ ((π₯ β π¦ β§ π¦ β π΄) β π₯ β π¦) | |
3 | 2 | reximi 3084 | . . . . . 6 β’ (βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β βπ¦ β π΅ π₯ β π¦) |
4 | eluni2 4911 | . . . . . 6 β’ (π₯ β βͺ π΅ β βπ¦ β π΅ π₯ β π¦) | |
5 | 3, 4 | sylibr 233 | . . . . 5 β’ (βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β π₯ β βͺ π΅) |
6 | 5 | ralimi 3083 | . . . 4 β’ (βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β βπ₯ β π΄ π₯ β βͺ π΅) |
7 | dfss3 3969 | . . . 4 β’ (π΄ β βͺ π΅ β βπ₯ β π΄ π₯ β βͺ π΅) | |
8 | 6, 7 | sylibr 233 | . . 3 β’ (βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β π΄ β βͺ π΅) |
9 | 8 | pm4.71ri 561 | . 2 β’ (βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄) β (π΄ β βͺ π΅ β§ βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄))) |
10 | 1, 9 | bitr4di 288 | 1 β’ (π΅ β π β (π΄ β (topGenβπ΅) β βπ₯ β π΄ βπ¦ β π΅ (π₯ β π¦ β§ π¦ β π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 βwral 3061 βwrex 3070 β wss 3947 βͺ cuni 4907 βcfv 6540 topGenctg 17379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-topgen 17385 |
This theorem is referenced by: tg2 22459 tgcl 22463 eltop2 22469 tgss2 22481 basgen2 22483 2ndc1stc 22946 eltx 23063 tgqioo 24307 isfne2 35215 |
Copyright terms: Public domain | W3C validator |