| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltg2b | Structured version Visualization version GIF version | ||
| Description: Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| eltg2b | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltg2 22881 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) | |
| 2 | simpl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝑥 ∈ 𝑦) | |
| 3 | 2 | reximi 3073 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) |
| 4 | eluni2 4884 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) | |
| 5 | 3, 4 | sylibr 234 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝑥 ∈ ∪ 𝐵) |
| 6 | 5 | ralimi 3072 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵) |
| 7 | dfss3 3945 | . . . 4 ⊢ (𝐴 ⊆ ∪ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵) | |
| 8 | 6, 7 | sylibr 234 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) → 𝐴 ⊆ ∪ 𝐵) |
| 9 | 8 | pm4.71ri 560 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴) ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| 10 | 1, 9 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3924 ∪ cuni 4880 ‘cfv 6527 topGenctg 17436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-iota 6480 df-fun 6529 df-fv 6535 df-topgen 17442 |
| This theorem is referenced by: tg2 22888 tgcl 22892 eltop2 22898 tgss2 22910 basgen2 22912 2ndc1stc 23374 eltx 23491 tgqioo 24724 isfne2 36281 |
| Copyright terms: Public domain | W3C validator |