Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4b Structured version   Visualization version   GIF version

Theorem isfne4b 36385
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4b (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))

Proof of Theorem isfne4b
StepHypRef Expression
1 isfne.1 . . 3 𝑋 = 𝐴
2 isfne.2 . . 3 𝑌 = 𝐵
31, 2isfne4 36384 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
4 simpr 484 . . . . . . 7 ((𝐵𝑉𝑋 = 𝑌) → 𝑋 = 𝑌)
54, 1, 23eqtr3g 2789 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 = 𝐵)
6 uniexg 7673 . . . . . . 7 (𝐵𝑉 𝐵 ∈ V)
76adantr 480 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐵 ∈ V)
85, 7eqeltrd 2831 . . . . 5 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
9 uniexb 7697 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
108, 9sylibr 234 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
11 simpl 482 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐵𝑉)
12 tgss3 22901 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1310, 11, 12syl2anc 584 . . 3 ((𝐵𝑉𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1413pm5.32da 579 . 2 (𝐵𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
153, 14bitr4id 290 1 (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   cuni 4856   class class class wbr 5089  cfv 6481  topGenctg 17341  Fnecfne 36380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17347  df-fne 36381
This theorem is referenced by:  fnetr  36395  fneval  36396
  Copyright terms: Public domain W3C validator