![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4b | Structured version Visualization version GIF version |
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | β’ π = βͺ π΄ |
isfne.2 | β’ π = βͺ π΅ |
Ref | Expression |
---|---|
isfne4b | β’ (π΅ β π β (π΄Fneπ΅ β (π = π β§ (topGenβπ΄) β (topGenβπ΅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfne.1 | . . 3 β’ π = βͺ π΄ | |
2 | isfne.2 | . . 3 β’ π = βͺ π΅ | |
3 | 1, 2 | isfne4 35857 | . 2 β’ (π΄Fneπ΅ β (π = π β§ π΄ β (topGenβπ΅))) |
4 | simpr 483 | . . . . . . 7 β’ ((π΅ β π β§ π = π) β π = π) | |
5 | 4, 1, 2 | 3eqtr3g 2791 | . . . . . 6 β’ ((π΅ β π β§ π = π) β βͺ π΄ = βͺ π΅) |
6 | uniexg 7751 | . . . . . . 7 β’ (π΅ β π β βͺ π΅ β V) | |
7 | 6 | adantr 479 | . . . . . 6 β’ ((π΅ β π β§ π = π) β βͺ π΅ β V) |
8 | 5, 7 | eqeltrd 2829 | . . . . 5 β’ ((π΅ β π β§ π = π) β βͺ π΄ β V) |
9 | uniexb 7772 | . . . . 5 β’ (π΄ β V β βͺ π΄ β V) | |
10 | 8, 9 | sylibr 233 | . . . 4 β’ ((π΅ β π β§ π = π) β π΄ β V) |
11 | simpl 481 | . . . 4 β’ ((π΅ β π β§ π = π) β π΅ β π) | |
12 | tgss3 22909 | . . . 4 β’ ((π΄ β V β§ π΅ β π) β ((topGenβπ΄) β (topGenβπ΅) β π΄ β (topGenβπ΅))) | |
13 | 10, 11, 12 | syl2anc 582 | . . 3 β’ ((π΅ β π β§ π = π) β ((topGenβπ΄) β (topGenβπ΅) β π΄ β (topGenβπ΅))) |
14 | 13 | pm5.32da 577 | . 2 β’ (π΅ β π β ((π = π β§ (topGenβπ΄) β (topGenβπ΅)) β (π = π β§ π΄ β (topGenβπ΅)))) |
15 | 3, 14 | bitr4id 289 | 1 β’ (π΅ β π β (π΄Fneπ΅ β (π = π β§ (topGenβπ΄) β (topGenβπ΅)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 Vcvv 3473 β wss 3949 βͺ cuni 4912 class class class wbr 5152 βcfv 6553 topGenctg 17426 Fnecfne 35853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-topgen 17432 df-fne 35854 |
This theorem is referenced by: fnetr 35868 fneval 35869 |
Copyright terms: Public domain | W3C validator |