![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4b | Structured version Visualization version GIF version |
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | β’ π = βͺ π΄ |
isfne.2 | β’ π = βͺ π΅ |
Ref | Expression |
---|---|
isfne4b | β’ (π΅ β π β (π΄Fneπ΅ β (π = π β§ (topGenβπ΄) β (topGenβπ΅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfne.1 | . . 3 β’ π = βͺ π΄ | |
2 | isfne.2 | . . 3 β’ π = βͺ π΅ | |
3 | 1, 2 | isfne4 35213 | . 2 β’ (π΄Fneπ΅ β (π = π β§ π΄ β (topGenβπ΅))) |
4 | simpr 485 | . . . . . . 7 β’ ((π΅ β π β§ π = π) β π = π) | |
5 | 4, 1, 2 | 3eqtr3g 2795 | . . . . . 6 β’ ((π΅ β π β§ π = π) β βͺ π΄ = βͺ π΅) |
6 | uniexg 7726 | . . . . . . 7 β’ (π΅ β π β βͺ π΅ β V) | |
7 | 6 | adantr 481 | . . . . . 6 β’ ((π΅ β π β§ π = π) β βͺ π΅ β V) |
8 | 5, 7 | eqeltrd 2833 | . . . . 5 β’ ((π΅ β π β§ π = π) β βͺ π΄ β V) |
9 | uniexb 7747 | . . . . 5 β’ (π΄ β V β βͺ π΄ β V) | |
10 | 8, 9 | sylibr 233 | . . . 4 β’ ((π΅ β π β§ π = π) β π΄ β V) |
11 | simpl 483 | . . . 4 β’ ((π΅ β π β§ π = π) β π΅ β π) | |
12 | tgss3 22480 | . . . 4 β’ ((π΄ β V β§ π΅ β π) β ((topGenβπ΄) β (topGenβπ΅) β π΄ β (topGenβπ΅))) | |
13 | 10, 11, 12 | syl2anc 584 | . . 3 β’ ((π΅ β π β§ π = π) β ((topGenβπ΄) β (topGenβπ΅) β π΄ β (topGenβπ΅))) |
14 | 13 | pm5.32da 579 | . 2 β’ (π΅ β π β ((π = π β§ (topGenβπ΄) β (topGenβπ΅)) β (π = π β§ π΄ β (topGenβπ΅)))) |
15 | 3, 14 | bitr4id 289 | 1 β’ (π΅ β π β (π΄Fneπ΅ β (π = π β§ (topGenβπ΄) β (topGenβπ΅)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3947 βͺ cuni 4907 class class class wbr 5147 βcfv 6540 topGenctg 17379 Fnecfne 35209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-topgen 17385 df-fne 35210 |
This theorem is referenced by: fnetr 35224 fneval 35225 |
Copyright terms: Public domain | W3C validator |