Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4b Structured version   Visualization version   GIF version

Theorem isfne4b 34160
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4b (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))

Proof of Theorem isfne4b
StepHypRef Expression
1 isfne.1 . . 3 𝑋 = 𝐴
2 isfne.2 . . 3 𝑌 = 𝐵
31, 2isfne4 34159 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
4 simpr 488 . . . . . . 7 ((𝐵𝑉𝑋 = 𝑌) → 𝑋 = 𝑌)
54, 1, 23eqtr3g 2796 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 = 𝐵)
6 uniexg 7478 . . . . . . 7 (𝐵𝑉 𝐵 ∈ V)
76adantr 484 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐵 ∈ V)
85, 7eqeltrd 2833 . . . . 5 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
9 uniexb 7499 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
108, 9sylibr 237 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
11 simpl 486 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐵𝑉)
12 tgss3 21730 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1310, 11, 12syl2anc 587 . . 3 ((𝐵𝑉𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1413pm5.32da 582 . 2 (𝐵𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
153, 14bitr4id 293 1 (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2113  Vcvv 3397  wss 3841   cuni 4793   class class class wbr 5027  cfv 6333  topGenctg 16807  Fnecfne 34155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-sbc 3680  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6291  df-fun 6335  df-fv 6341  df-topgen 16813  df-fne 34156
This theorem is referenced by:  fnetr  34170  fneval  34171
  Copyright terms: Public domain W3C validator