|   | Mathbox for Jeff Hankins | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4b | Structured version Visualization version GIF version | ||
| Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| isfne.1 | ⊢ 𝑋 = ∪ 𝐴 | 
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 | 
| Ref | Expression | 
|---|---|
| isfne4b | ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isfne.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | isfne.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | 1, 2 | isfne4 36342 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) | 
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 5 | 4, 1, 2 | 3eqtr3g 2799 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 = ∪ 𝐵) | 
| 6 | uniexg 7761 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐵 ∈ V) | 
| 8 | 5, 7 | eqeltrd 2840 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 ∈ V) | 
| 9 | uniexb 7785 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
| 10 | 8, 9 | sylibr 234 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐴 ∈ V) | 
| 11 | simpl 482 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐵 ∈ 𝑉) | |
| 12 | tgss3 22994 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) | 
| 14 | 13 | pm5.32da 579 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) | 
| 15 | 3, 14 | bitr4id 290 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 ∪ cuni 4906 class class class wbr 5142 ‘cfv 6560 topGenctg 17483 Fnecfne 36338 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-topgen 17489 df-fne 36339 | 
| This theorem is referenced by: fnetr 36353 fneval 36354 | 
| Copyright terms: Public domain | W3C validator |