Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4b Structured version   Visualization version   GIF version

Theorem isfne4b 34509
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4b (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))

Proof of Theorem isfne4b
StepHypRef Expression
1 isfne.1 . . 3 𝑋 = 𝐴
2 isfne.2 . . 3 𝑌 = 𝐵
31, 2isfne4 34508 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
4 simpr 484 . . . . . . 7 ((𝐵𝑉𝑋 = 𝑌) → 𝑋 = 𝑌)
54, 1, 23eqtr3g 2802 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 = 𝐵)
6 uniexg 7584 . . . . . . 7 (𝐵𝑉 𝐵 ∈ V)
76adantr 480 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐵 ∈ V)
85, 7eqeltrd 2840 . . . . 5 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
9 uniexb 7605 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
108, 9sylibr 233 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
11 simpl 482 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐵𝑉)
12 tgss3 22117 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1310, 11, 12syl2anc 583 . . 3 ((𝐵𝑉𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1413pm5.32da 578 . 2 (𝐵𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
153, 14bitr4id 289 1 (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  wss 3891   cuni 4844   class class class wbr 5078  cfv 6430  topGenctg 17129  Fnecfne 34504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-topgen 17135  df-fne 34505
This theorem is referenced by:  fnetr  34519  fneval  34520
  Copyright terms: Public domain W3C validator