| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4b | Structured version Visualization version GIF version | ||
| Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
| isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| isfne4b | ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfne.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
| 2 | isfne.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
| 3 | 1, 2 | isfne4 36384 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
| 4 | simpr 484 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 5 | 4, 1, 2 | 3eqtr3g 2789 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 = ∪ 𝐵) |
| 6 | uniexg 7673 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐵 ∈ V) |
| 8 | 5, 7 | eqeltrd 2831 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 ∈ V) |
| 9 | uniexb 7697 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
| 10 | 8, 9 | sylibr 234 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐴 ∈ V) |
| 11 | simpl 482 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐵 ∈ 𝑉) | |
| 12 | tgss3 22901 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) |
| 14 | 13 | pm5.32da 579 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
| 15 | 3, 14 | bitr4id 290 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ∪ cuni 4856 class class class wbr 5089 ‘cfv 6481 topGenctg 17341 Fnecfne 36380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-topgen 17347 df-fne 36381 |
| This theorem is referenced by: fnetr 36395 fneval 36396 |
| Copyright terms: Public domain | W3C validator |