Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4b Structured version   Visualization version   GIF version

Theorem isfne4b 35733
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = βˆͺ 𝐴
isfne.2 π‘Œ = βˆͺ 𝐡
Assertion
Ref Expression
isfne4b (𝐡 ∈ 𝑉 β†’ (𝐴Fne𝐡 ↔ (𝑋 = π‘Œ ∧ (topGenβ€˜π΄) βŠ† (topGenβ€˜π΅))))

Proof of Theorem isfne4b
StepHypRef Expression
1 isfne.1 . . 3 𝑋 = βˆͺ 𝐴
2 isfne.2 . . 3 π‘Œ = βˆͺ 𝐡
31, 2isfne4 35732 . 2 (𝐴Fne𝐡 ↔ (𝑋 = π‘Œ ∧ 𝐴 βŠ† (topGenβ€˜π΅)))
4 simpr 484 . . . . . . 7 ((𝐡 ∈ 𝑉 ∧ 𝑋 = π‘Œ) β†’ 𝑋 = π‘Œ)
54, 1, 23eqtr3g 2789 . . . . . 6 ((𝐡 ∈ 𝑉 ∧ 𝑋 = π‘Œ) β†’ βˆͺ 𝐴 = βˆͺ 𝐡)
6 uniexg 7726 . . . . . . 7 (𝐡 ∈ 𝑉 β†’ βˆͺ 𝐡 ∈ V)
76adantr 480 . . . . . 6 ((𝐡 ∈ 𝑉 ∧ 𝑋 = π‘Œ) β†’ βˆͺ 𝐡 ∈ V)
85, 7eqeltrd 2827 . . . . 5 ((𝐡 ∈ 𝑉 ∧ 𝑋 = π‘Œ) β†’ βˆͺ 𝐴 ∈ V)
9 uniexb 7747 . . . . 5 (𝐴 ∈ V ↔ βˆͺ 𝐴 ∈ V)
108, 9sylibr 233 . . . 4 ((𝐡 ∈ 𝑉 ∧ 𝑋 = π‘Œ) β†’ 𝐴 ∈ V)
11 simpl 482 . . . 4 ((𝐡 ∈ 𝑉 ∧ 𝑋 = π‘Œ) β†’ 𝐡 ∈ 𝑉)
12 tgss3 22839 . . . 4 ((𝐴 ∈ V ∧ 𝐡 ∈ 𝑉) β†’ ((topGenβ€˜π΄) βŠ† (topGenβ€˜π΅) ↔ 𝐴 βŠ† (topGenβ€˜π΅)))
1310, 11, 12syl2anc 583 . . 3 ((𝐡 ∈ 𝑉 ∧ 𝑋 = π‘Œ) β†’ ((topGenβ€˜π΄) βŠ† (topGenβ€˜π΅) ↔ 𝐴 βŠ† (topGenβ€˜π΅)))
1413pm5.32da 578 . 2 (𝐡 ∈ 𝑉 β†’ ((𝑋 = π‘Œ ∧ (topGenβ€˜π΄) βŠ† (topGenβ€˜π΅)) ↔ (𝑋 = π‘Œ ∧ 𝐴 βŠ† (topGenβ€˜π΅))))
153, 14bitr4id 290 1 (𝐡 ∈ 𝑉 β†’ (𝐴Fne𝐡 ↔ (𝑋 = π‘Œ ∧ (topGenβ€˜π΄) βŠ† (topGenβ€˜π΅))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3468   βŠ† wss 3943  βˆͺ cuni 4902   class class class wbr 5141  β€˜cfv 6536  topGenctg 17389  Fnecfne 35728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-topgen 17395  df-fne 35729
This theorem is referenced by:  fnetr  35743  fneval  35744
  Copyright terms: Public domain W3C validator