Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne4b Structured version   Visualization version   GIF version

Theorem isfne4b 36364
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne4b (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))

Proof of Theorem isfne4b
StepHypRef Expression
1 isfne.1 . . 3 𝑋 = 𝐴
2 isfne.2 . . 3 𝑌 = 𝐵
31, 2isfne4 36363 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
4 simpr 484 . . . . . . 7 ((𝐵𝑉𝑋 = 𝑌) → 𝑋 = 𝑌)
54, 1, 23eqtr3g 2794 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 = 𝐵)
6 uniexg 7739 . . . . . . 7 (𝐵𝑉 𝐵 ∈ V)
76adantr 480 . . . . . 6 ((𝐵𝑉𝑋 = 𝑌) → 𝐵 ∈ V)
85, 7eqeltrd 2835 . . . . 5 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
9 uniexb 7763 . . . . 5 (𝐴 ∈ V ↔ 𝐴 ∈ V)
108, 9sylibr 234 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐴 ∈ V)
11 simpl 482 . . . 4 ((𝐵𝑉𝑋 = 𝑌) → 𝐵𝑉)
12 tgss3 22929 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1310, 11, 12syl2anc 584 . . 3 ((𝐵𝑉𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵)))
1413pm5.32da 579 . 2 (𝐵𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵))))
153, 14bitr4id 290 1 (𝐵𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931   cuni 4888   class class class wbr 5124  cfv 6536  topGenctg 17456  Fnecfne 36359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-topgen 17462  df-fne 36360
This theorem is referenced by:  fnetr  36374  fneval  36375
  Copyright terms: Public domain W3C validator