Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne4b | Structured version Visualization version GIF version |
Description: A condition for a topology to be finer than another. (Contributed by Jeff Hankins, 28-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
isfne4b | ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfne.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
2 | isfne.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
3 | 1, 2 | isfne4 34578 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
4 | simpr 486 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
5 | 4, 1, 2 | 3eqtr3g 2799 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 = ∪ 𝐵) |
6 | uniexg 7625 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → ∪ 𝐵 ∈ V) | |
7 | 6 | adantr 482 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐵 ∈ V) |
8 | 5, 7 | eqeltrd 2837 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ∪ 𝐴 ∈ V) |
9 | uniexb 7646 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
10 | 8, 9 | sylibr 233 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐴 ∈ V) |
11 | simpl 484 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → 𝐵 ∈ 𝑉) | |
12 | tgss3 22185 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝑉) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) | |
13 | 10, 11, 12 | syl2anc 585 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝑋 = 𝑌) → ((topGen‘𝐴) ⊆ (topGen‘𝐵) ↔ 𝐴 ⊆ (topGen‘𝐵))) |
14 | 13 | pm5.32da 580 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)))) |
15 | 3, 14 | bitr4id 290 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ (topGen‘𝐴) ⊆ (topGen‘𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 ∪ cuni 4844 class class class wbr 5081 ‘cfv 6458 topGenctg 17197 Fnecfne 34574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-topgen 17203 df-fne 34575 |
This theorem is referenced by: fnetr 34589 fneval 34590 |
Copyright terms: Public domain | W3C validator |