| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fness | Structured version Visualization version GIF version | ||
| Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.) |
| Ref | Expression |
|---|---|
| fness.1 | ⊢ 𝑋 = ∪ 𝐴 |
| fness.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| fness | ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Fne𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1139 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 2 | ssel2 3978 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 3 | 2 | 3adant3 1133 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝐵) |
| 4 | simp3 1139 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
| 5 | ssid 4006 | . . . . . . 7 ⊢ 𝑥 ⊆ 𝑥 | |
| 6 | 4, 5 | jctir 520 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) |
| 7 | elequ2 2123 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) | |
| 8 | sseq1 4009 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥)) | |
| 9 | 7, 8 | anbi12d 632 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥))) |
| 10 | 9 | rspcev 3622 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 11 | 3, 6, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 12 | 11 | 3expib 1123 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
| 13 | 12 | ralrimivv 3200 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 14 | 13 | 3ad2ant2 1135 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 15 | fness.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
| 16 | fness.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
| 17 | 15, 16 | isfne2 36343 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| 18 | 17 | 3ad2ant1 1134 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| 19 | 1, 14, 18 | mpbir2and 713 | 1 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Fne𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 ∪ cuni 4907 class class class wbr 5143 Fnecfne 36337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-topgen 17488 df-fne 36338 |
| This theorem is referenced by: fnessref 36358 refssfne 36359 |
| Copyright terms: Public domain | W3C validator |