| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fness | Structured version Visualization version GIF version | ||
| Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.) |
| Ref | Expression |
|---|---|
| fness.1 | ⊢ 𝑋 = ∪ 𝐴 |
| fness.2 | ⊢ 𝑌 = ∪ 𝐵 |
| Ref | Expression |
|---|---|
| fness | ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Fne𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
| 2 | ssel2 3958 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
| 3 | 2 | 3adant3 1132 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝐵) |
| 4 | simp3 1138 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
| 5 | ssid 3986 | . . . . . . 7 ⊢ 𝑥 ⊆ 𝑥 | |
| 6 | 4, 5 | jctir 520 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) |
| 7 | elequ2 2122 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) | |
| 8 | sseq1 3989 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥)) | |
| 9 | 7, 8 | anbi12d 632 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥))) |
| 10 | 9 | rspcev 3605 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 11 | 3, 6, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 12 | 11 | 3expib 1122 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
| 13 | 12 | ralrimivv 3187 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 14 | 13 | 3ad2ant2 1134 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
| 15 | fness.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
| 16 | fness.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
| 17 | 15, 16 | isfne2 36302 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| 18 | 17 | 3ad2ant1 1133 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
| 19 | 1, 14, 18 | mpbir2and 713 | 1 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Fne𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3931 ∪ cuni 4887 class class class wbr 5123 Fnecfne 36296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-topgen 17459 df-fne 36297 |
| This theorem is referenced by: fnessref 36317 refssfne 36318 |
| Copyright terms: Public domain | W3C validator |