Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fness Structured version   Visualization version   GIF version

Theorem fness 36350
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.)
Hypotheses
Ref Expression
fness.1 𝑋 = 𝐴
fness.2 𝑌 = 𝐵
Assertion
Ref Expression
fness ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)

Proof of Theorem fness
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1139 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝑋 = 𝑌)
2 ssel2 3978 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
323adant3 1133 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑥𝐵)
4 simp3 1139 . . . . . . 7 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑦𝑥)
5 ssid 4006 . . . . . . 7 𝑥𝑥
64, 5jctir 520 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → (𝑦𝑥𝑥𝑥))
7 elequ2 2123 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
8 sseq1 4009 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
97, 8anbi12d 632 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
109rspcev 3622 . . . . . 6 ((𝑥𝐵 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
113, 6, 10syl2anc 584 . . . . 5 ((𝐴𝐵𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
12113expib 1123 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥)))
1312ralrimivv 3200 . . 3 (𝐴𝐵 → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
14133ad2ant2 1135 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
15 fness.1 . . . 4 𝑋 = 𝐴
16 fness.2 . . . 4 𝑌 = 𝐵
1715, 16isfne2 36343 . . 3 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
18173ad2ant1 1134 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
191, 14, 18mpbir2and 713 1 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   cuni 4907   class class class wbr 5143  Fnecfne 36337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-topgen 17488  df-fne 36338
This theorem is referenced by:  fnessref  36358  refssfne  36359
  Copyright terms: Public domain W3C validator