Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fness | Structured version Visualization version GIF version |
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.) |
Ref | Expression |
---|---|
fness.1 | ⊢ 𝑋 = ∪ 𝐴 |
fness.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
fness | ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Fne𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) | |
2 | ssel2 3916 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
3 | 2 | 3adant3 1131 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑥 ∈ 𝐵) |
4 | simp3 1137 | . . . . . . 7 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
5 | ssid 3943 | . . . . . . 7 ⊢ 𝑥 ⊆ 𝑥 | |
6 | 4, 5 | jctir 521 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) |
7 | elequ2 2121 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑥)) | |
8 | sseq1 3946 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝑧 ⊆ 𝑥 ↔ 𝑥 ⊆ 𝑥)) | |
9 | 7, 8 | anbi12d 631 | . . . . . . 7 ⊢ (𝑧 = 𝑥 → ((𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥) ↔ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥))) |
10 | 9 | rspcev 3561 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑥)) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
11 | 3, 6, 10 | syl2anc 584 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
12 | 11 | 3expib 1121 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) → ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥))) |
13 | 12 | ralrimivv 3122 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
14 | 13 | 3ad2ant2 1133 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)) |
15 | fness.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐴 | |
16 | fness.2 | . . . 4 ⊢ 𝑌 = ∪ 𝐵 | |
17 | 15, 16 | isfne2 34531 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
18 | 17 | 3ad2ant1 1132 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝐵 (𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥)))) |
19 | 1, 14, 18 | mpbir2and 710 | 1 ⊢ ((𝐵 ∈ 𝐶 ∧ 𝐴 ⊆ 𝐵 ∧ 𝑋 = 𝑌) → 𝐴Fne𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 Fnecfne 34525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topgen 17154 df-fne 34526 |
This theorem is referenced by: fnessref 34546 refssfne 34547 |
Copyright terms: Public domain | W3C validator |