Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fness Structured version   Visualization version   GIF version

Theorem fness 34538
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.)
Hypotheses
Ref Expression
fness.1 𝑋 = 𝐴
fness.2 𝑌 = 𝐵
Assertion
Ref Expression
fness ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)

Proof of Theorem fness
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝑋 = 𝑌)
2 ssel2 3916 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
323adant3 1131 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑥𝐵)
4 simp3 1137 . . . . . . 7 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑦𝑥)
5 ssid 3943 . . . . . . 7 𝑥𝑥
64, 5jctir 521 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → (𝑦𝑥𝑥𝑥))
7 elequ2 2121 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
8 sseq1 3946 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
97, 8anbi12d 631 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
109rspcev 3561 . . . . . 6 ((𝑥𝐵 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
113, 6, 10syl2anc 584 . . . . 5 ((𝐴𝐵𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
12113expib 1121 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥)))
1312ralrimivv 3122 . . 3 (𝐴𝐵 → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
14133ad2ant2 1133 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
15 fness.1 . . . 4 𝑋 = 𝐴
16 fness.2 . . . 4 𝑌 = 𝐵
1715, 16isfne2 34531 . . 3 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
18173ad2ant1 1132 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
191, 14, 18mpbir2and 710 1 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887   cuni 4839   class class class wbr 5074  Fnecfne 34525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-topgen 17154  df-fne 34526
This theorem is referenced by:  fnessref  34546  refssfne  34547
  Copyright terms: Public domain W3C validator