Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fness Structured version   Visualization version   GIF version

Theorem fness 32681
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.)
Hypotheses
Ref Expression
fness.1 𝑋 = 𝐴
fness.2 𝑌 = 𝐵
Assertion
Ref Expression
fness ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)

Proof of Theorem fness
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1132 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝑋 = 𝑌)
2 ssel2 3747 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
323adant3 1126 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑥𝐵)
4 simp3 1132 . . . . . . 7 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑦𝑥)
5 ssid 3773 . . . . . . 7 𝑥𝑥
64, 5jctir 510 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → (𝑦𝑥𝑥𝑥))
7 elequ2 2159 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
8 sseq1 3775 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
97, 8anbi12d 616 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
109rspcev 3460 . . . . . 6 ((𝑥𝐵 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
113, 6, 10syl2anc 573 . . . . 5 ((𝐴𝐵𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
12113expib 1116 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥)))
1312ralrimivv 3119 . . 3 (𝐴𝐵 → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
14133ad2ant2 1128 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
15 fness.1 . . . 4 𝑋 = 𝐴
16 fness.2 . . . 4 𝑌 = 𝐵
1715, 16isfne2 32674 . . 3 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
18173ad2ant1 1127 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
191, 14, 18mpbir2and 692 1 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  wrex 3062  wss 3723   cuni 4575   class class class wbr 4787  Fnecfne 32668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5993  df-fun 6032  df-fv 6038  df-topgen 16312  df-fne 32669
This theorem is referenced by:  fnessref  32689  refssfne  32690
  Copyright terms: Public domain W3C validator