Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fness Structured version   Visualization version   GIF version

Theorem fness 36382
Description: A cover is finer than its subcovers. (Contributed by Jeff Hankins, 11-Oct-2009.)
Hypotheses
Ref Expression
fness.1 𝑋 = 𝐴
fness.2 𝑌 = 𝐵
Assertion
Ref Expression
fness ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)

Proof of Theorem fness
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝑋 = 𝑌)
2 ssel2 3929 . . . . . . 7 ((𝐴𝐵𝑥𝐴) → 𝑥𝐵)
323adant3 1132 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑥𝐵)
4 simp3 1138 . . . . . . 7 ((𝐴𝐵𝑥𝐴𝑦𝑥) → 𝑦𝑥)
5 ssid 3957 . . . . . . 7 𝑥𝑥
64, 5jctir 520 . . . . . 6 ((𝐴𝐵𝑥𝐴𝑦𝑥) → (𝑦𝑥𝑥𝑥))
7 elequ2 2126 . . . . . . . 8 (𝑧 = 𝑥 → (𝑦𝑧𝑦𝑥))
8 sseq1 3960 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑥𝑥𝑥))
97, 8anbi12d 632 . . . . . . 7 (𝑧 = 𝑥 → ((𝑦𝑧𝑧𝑥) ↔ (𝑦𝑥𝑥𝑥)))
109rspcev 3577 . . . . . 6 ((𝑥𝐵 ∧ (𝑦𝑥𝑥𝑥)) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
113, 6, 10syl2anc 584 . . . . 5 ((𝐴𝐵𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥))
12113expib 1122 . . . 4 (𝐴𝐵 → ((𝑥𝐴𝑦𝑥) → ∃𝑧𝐵 (𝑦𝑧𝑧𝑥)))
1312ralrimivv 3173 . . 3 (𝐴𝐵 → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
14133ad2ant2 1134 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))
15 fness.1 . . . 4 𝑋 = 𝐴
16 fness.2 . . . 4 𝑌 = 𝐵
1715, 16isfne2 36375 . . 3 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
18173ad2ant1 1133 . 2 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦𝑥𝑧𝐵 (𝑦𝑧𝑧𝑥))))
191, 14, 18mpbir2and 713 1 ((𝐵𝐶𝐴𝐵𝑋 = 𝑌) → 𝐴Fne𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   cuni 4859   class class class wbr 5091  Fnecfne 36369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-topgen 17344  df-fne 36370
This theorem is referenced by:  fnessref  36390  refssfne  36391
  Copyright terms: Public domain W3C validator