Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshplss Structured version   Visualization version   GIF version

Theorem lshplss 38974
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshplss.s 𝑆 = (LSubSp‘𝑊)
lshplss.h 𝐻 = (LSHyp‘𝑊)
lshplss.w (𝜑𝑊 ∈ LMod)
lshplss.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshplss (𝜑𝑈𝑆)

Proof of Theorem lshplss
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshplss.u . . 3 (𝜑𝑈𝐻)
2 lshplss.w . . . 4 (𝜑𝑊 ∈ LMod)
3 eqid 2729 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2729 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lshplss.s . . . . 5 𝑆 = (LSubSp‘𝑊)
6 lshplss.h . . . . 5 𝐻 = (LSHyp‘𝑊)
73, 4, 5, 6islshp 38972 . . . 4 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈𝑆𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))))
82, 7syl 17 . . 3 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))))
91, 8mpbid 232 . 2 (𝜑 → (𝑈𝑆𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))
109simp1d 1142 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cun 3912  {csn 4589  cfv 6511  Basecbs 17179  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LSHypclsh 38968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-lshyp 38970
This theorem is referenced by:  lshpnel  38976  lshpnelb  38977  lshpne0  38979  lshpdisj  38980  lshpcmp  38981  lshpsmreu  39102  lshpkrlem1  39103  lshpkrlem5  39107  lshpkr  39110  dochshpncl  41378  dochshpsat  41448  lclkrlem2f  41506
  Copyright terms: Public domain W3C validator