Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshplss | Structured version Visualization version GIF version |
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
lshplss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshplss.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshplss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshplss.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshplss | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshplss.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
2 | lshplss.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | eqid 2739 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2739 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | lshplss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
6 | lshplss.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
7 | 3, 4, 5, 6 | islshp 36972 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))) |
10 | 9 | simp1d 1140 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 ∪ cun 3889 {csn 4566 ‘cfv 6430 Basecbs 16893 LModclmod 20104 LSubSpclss 20174 LSpanclspn 20214 LSHypclsh 36968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-lshyp 36970 |
This theorem is referenced by: lshpnel 36976 lshpnelb 36977 lshpne0 36979 lshpdisj 36980 lshpcmp 36981 lshpsmreu 37102 lshpkrlem1 37103 lshpkrlem5 37107 lshpkr 37110 dochshpncl 39377 dochshpsat 39447 lclkrlem2f 39505 |
Copyright terms: Public domain | W3C validator |