| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshplss | Structured version Visualization version GIF version | ||
| Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshplss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lshplss.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshplss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lshplss.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| Ref | Expression |
|---|---|
| lshplss | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshplss.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 2 | lshplss.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | lshplss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 6 | lshplss.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 7 | 3, 4, 5, 6 | islshp 39018 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))) |
| 10 | 9 | simp1d 1142 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∪ cun 3895 {csn 4571 ‘cfv 6476 Basecbs 17115 LModclmod 20788 LSubSpclss 20859 LSpanclspn 20899 LSHypclsh 39014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-lshyp 39016 |
| This theorem is referenced by: lshpnel 39022 lshpnelb 39023 lshpne0 39025 lshpdisj 39026 lshpcmp 39027 lshpsmreu 39148 lshpkrlem1 39149 lshpkrlem5 39153 lshpkr 39156 dochshpncl 41423 dochshpsat 41493 lclkrlem2f 41551 |
| Copyright terms: Public domain | W3C validator |