![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshplss | Structured version Visualization version GIF version |
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
lshplss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshplss.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshplss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshplss.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshplss | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshplss.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
2 | lshplss.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | eqid 2799 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2799 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | lshplss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
6 | lshplss.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
7 | 3, 4, 5, 6 | islshp 35000 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
9 | 1, 8 | mpbid 224 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))) |
10 | 9 | simp1d 1173 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∃wrex 3090 ∪ cun 3767 {csn 4368 ‘cfv 6101 Basecbs 16184 LModclmod 19181 LSubSpclss 19250 LSpanclspn 19292 LSHypclsh 34996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-iota 6064 df-fun 6103 df-fv 6109 df-lshyp 34998 |
This theorem is referenced by: lshpnel 35004 lshpnelb 35005 lshpne0 35007 lshpdisj 35008 lshpcmp 35009 lshpsmreu 35130 lshpkrlem1 35131 lshpkrlem5 35135 lshpkr 35138 dochshpncl 37405 dochshpsat 37475 lclkrlem2f 37533 |
Copyright terms: Public domain | W3C validator |