Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshplss Structured version   Visualization version   GIF version

Theorem lshplss 36922
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
lshplss.s 𝑆 = (LSubSp‘𝑊)
lshplss.h 𝐻 = (LSHyp‘𝑊)
lshplss.w (𝜑𝑊 ∈ LMod)
lshplss.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshplss (𝜑𝑈𝑆)

Proof of Theorem lshplss
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshplss.u . . 3 (𝜑𝑈𝐻)
2 lshplss.w . . . 4 (𝜑𝑊 ∈ LMod)
3 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2738 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lshplss.s . . . . 5 𝑆 = (LSubSp‘𝑊)
6 lshplss.h . . . . 5 𝐻 = (LSHyp‘𝑊)
73, 4, 5, 6islshp 36920 . . . 4 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈𝑆𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))))
82, 7syl 17 . . 3 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))))
91, 8mpbid 231 . 2 (𝜑 → (𝑈𝑆𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))
109simp1d 1140 1 (𝜑𝑈𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cun 3881  {csn 4558  cfv 6418  Basecbs 16840  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LSHypclsh 36916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-lshyp 36918
This theorem is referenced by:  lshpnel  36924  lshpnelb  36925  lshpne0  36927  lshpdisj  36928  lshpcmp  36929  lshpsmreu  37050  lshpkrlem1  37051  lshpkrlem5  37055  lshpkr  37058  dochshpncl  39325  dochshpsat  39395  lclkrlem2f  39453
  Copyright terms: Public domain W3C validator