| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshplss | Structured version Visualization version GIF version | ||
| Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshplss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lshplss.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshplss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lshplss.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| Ref | Expression |
|---|---|
| lshplss | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshplss.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 2 | lshplss.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | lshplss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 6 | lshplss.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 7 | 3, 4, 5, 6 | islshp 38972 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))) |
| 10 | 9 | simp1d 1142 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ∪ cun 3912 {csn 4589 ‘cfv 6511 Basecbs 17179 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 LSHypclsh 38968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-lshyp 38970 |
| This theorem is referenced by: lshpnel 38976 lshpnelb 38977 lshpne0 38979 lshpdisj 38980 lshpcmp 38981 lshpsmreu 39102 lshpkrlem1 39103 lshpkrlem5 39107 lshpkr 39110 dochshpncl 41378 dochshpsat 41448 lclkrlem2f 41506 |
| Copyright terms: Public domain | W3C validator |