Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshplss | Structured version Visualization version GIF version |
Description: A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
lshplss.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lshplss.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshplss.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshplss.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshplss | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshplss.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
2 | lshplss.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2733 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | lshplss.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
6 | lshplss.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
7 | 3, 4, 5, 6 | islshp 37019 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊)))) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ (Base‘𝑊) ∧ ∃𝑣 ∈ (Base‘𝑊)((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = (Base‘𝑊))) |
10 | 9 | simp1d 1140 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 ∃wrex 3068 ∪ cun 3887 {csn 4564 ‘cfv 6447 Basecbs 16940 LModclmod 20151 LSubSpclss 20221 LSpanclspn 20261 LSHypclsh 37015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-iota 6399 df-fun 6449 df-fv 6455 df-lshyp 37017 |
This theorem is referenced by: lshpnel 37023 lshpnelb 37024 lshpne0 37026 lshpdisj 37027 lshpcmp 37028 lshpsmreu 37149 lshpkrlem1 37150 lshpkrlem5 37154 lshpkr 37157 dochshpncl 39424 dochshpsat 39494 lclkrlem2f 39552 |
Copyright terms: Public domain | W3C validator |