| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpnel2N | Structured version Visualization version GIF version | ||
| Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lshpnel2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpnel2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lshpnel2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lshpnel2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lshpnel2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpnel2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lshpnel2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lshpnel2.t | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| lshpnel2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lshpnel2.e | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| lshpnel2N | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpnel2.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → ¬ 𝑋 ∈ 𝑈) |
| 3 | lshpnel2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lshpnel2.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | lshpnel2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 6 | lshpnel2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 7 | lshpnel2.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑊 ∈ LVec) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑈 ∈ 𝐻) | |
| 10 | lshpnel2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑋 ∈ 𝑉) |
| 12 | 3, 4, 5, 6, 8, 9, 11 | lshpnelb 39089 | . . 3 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → (¬ 𝑋 ∈ 𝑈 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
| 13 | 2, 12 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) |
| 14 | lshpnel2.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ∈ 𝑆) |
| 16 | lshpnel2.t | . . . 4 ⊢ (𝜑 → 𝑈 ≠ 𝑉) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ≠ 𝑉) |
| 18 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑋 ∈ 𝑉) |
| 19 | lveclmod 21046 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 20 | 7, 19 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 21 | lshpnel2.s | . . . . . . . . . . 11 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 22 | 21, 4 | lspid 20921 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| 23 | 20, 14, 22 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘𝑈) = 𝑈) |
| 24 | 23 | uneq1d 4116 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁‘𝑈) ∪ (𝑁‘{𝑋})) = (𝑈 ∪ (𝑁‘{𝑋}))) |
| 25 | 24 | fveq2d 6832 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
| 26 | 3, 21 | lssss 20875 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 27 | 14, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 28 | 10 | snssd 4760 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 29 | 3, 4 | lspun 20926 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋})))) |
| 30 | 20, 27, 28, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋})))) |
| 31 | 3, 21, 4 | lspsncl 20916 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 32 | 20, 10, 31 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
| 33 | 21, 4, 5 | lsmsp 21026 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
| 34 | 20, 14, 32, 33 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
| 35 | 25, 30, 34 | 3eqtr4rd 2777 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ {𝑋}))) |
| 36 | 35 | eqeq1d 2733 | . . . . 5 ⊢ (𝜑 → ((𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)) |
| 37 | 36 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) |
| 38 | sneq 4585 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
| 39 | 38 | uneq2d 4117 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (𝑈 ∪ {𝑣}) = (𝑈 ∪ {𝑋})) |
| 40 | 39 | fveqeq2d 6836 | . . . . 5 ⊢ (𝑣 = 𝑋 → ((𝑁‘(𝑈 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)) |
| 41 | 40 | rspcev 3572 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) → ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) |
| 42 | 18, 37, 41 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) |
| 43 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LVec) |
| 44 | 3, 4, 21, 6 | islshp 39084 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 45 | 43, 44 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 46 | 15, 17, 42, 45 | mpbir3and 1343 | . 2 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ∈ 𝐻) |
| 47 | 13, 46 | impbida 800 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∪ cun 3895 ⊆ wss 3897 {csn 4575 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 LSSumclsm 19552 LModclmod 20799 LSubSpclss 20870 LSpanclspn 20910 LVecclvec 21042 LSHypclsh 39080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19042 df-cntz 19235 df-lsm 19554 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-lvec 21043 df-lshyp 39082 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |