Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnel2N Structured version   Visualization version   GIF version

Theorem lshpnel2N 36125
Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpnel2.v 𝑉 = (Base‘𝑊)
lshpnel2.s 𝑆 = (LSubSp‘𝑊)
lshpnel2.n 𝑁 = (LSpan‘𝑊)
lshpnel2.p = (LSSum‘𝑊)
lshpnel2.h 𝐻 = (LSHyp‘𝑊)
lshpnel2.w (𝜑𝑊 ∈ LVec)
lshpnel2.u (𝜑𝑈𝑆)
lshpnel2.t (𝜑𝑈𝑉)
lshpnel2.x (𝜑𝑋𝑉)
lshpnel2.e (𝜑 → ¬ 𝑋𝑈)
Assertion
Ref Expression
lshpnel2N (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnel2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnel2.e . . . 4 (𝜑 → ¬ 𝑋𝑈)
21adantr 483 . . 3 ((𝜑𝑈𝐻) → ¬ 𝑋𝑈)
3 lshpnel2.v . . . 4 𝑉 = (Base‘𝑊)
4 lshpnel2.n . . . 4 𝑁 = (LSpan‘𝑊)
5 lshpnel2.p . . . 4 = (LSSum‘𝑊)
6 lshpnel2.h . . . 4 𝐻 = (LSHyp‘𝑊)
7 lshpnel2.w . . . . 5 (𝜑𝑊 ∈ LVec)
87adantr 483 . . . 4 ((𝜑𝑈𝐻) → 𝑊 ∈ LVec)
9 simpr 487 . . . 4 ((𝜑𝑈𝐻) → 𝑈𝐻)
10 lshpnel2.x . . . . 5 (𝜑𝑋𝑉)
1110adantr 483 . . . 4 ((𝜑𝑈𝐻) → 𝑋𝑉)
123, 4, 5, 6, 8, 9, 11lshpnelb 36124 . . 3 ((𝜑𝑈𝐻) → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
132, 12mpbid 234 . 2 ((𝜑𝑈𝐻) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
14 lshpnel2.u . . . 4 (𝜑𝑈𝑆)
1514adantr 483 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑆)
16 lshpnel2.t . . . 4 (𝜑𝑈𝑉)
1716adantr 483 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑉)
1810adantr 483 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
19 lveclmod 19881 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
207, 19syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
21 lshpnel2.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
2221, 4lspid 19757 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
2320, 14, 22syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑁𝑈) = 𝑈)
2423uneq1d 4141 . . . . . . . 8 (𝜑 → ((𝑁𝑈) ∪ (𝑁‘{𝑋})) = (𝑈 ∪ (𝑁‘{𝑋})))
2524fveq2d 6677 . . . . . . 7 (𝜑 → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
263, 21lssss 19711 . . . . . . . . 9 (𝑈𝑆𝑈𝑉)
2714, 26syl 17 . . . . . . . 8 (𝜑𝑈𝑉)
2810snssd 4745 . . . . . . . 8 (𝜑 → {𝑋} ⊆ 𝑉)
293, 4lspun 19762 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
3020, 27, 28, 29syl3anc 1367 . . . . . . 7 (𝜑 → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
313, 21, 4lspsncl 19752 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
3220, 10, 31syl2anc 586 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
3321, 4, 5lsmsp 19861 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3420, 14, 32, 33syl3anc 1367 . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3525, 30, 343eqtr4rd 2870 . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ {𝑋})))
3635eqeq1d 2826 . . . . 5 (𝜑 → ((𝑈 (𝑁‘{𝑋})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
3736biimpa 479 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)
38 sneq 4580 . . . . . . 7 (𝑣 = 𝑋 → {𝑣} = {𝑋})
3938uneq2d 4142 . . . . . 6 (𝑣 = 𝑋 → (𝑈 ∪ {𝑣}) = (𝑈 ∪ {𝑋}))
4039fveqeq2d 6681 . . . . 5 (𝑣 = 𝑋 → ((𝑁‘(𝑈 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
4140rspcev 3626 . . . 4 ((𝑋𝑉 ∧ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
4218, 37, 41syl2anc 586 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
437adantr 483 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LVec)
443, 4, 21, 6islshp 36119 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4543, 44syl 17 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4615, 17, 42, 45mpbir3and 1338 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
4713, 46impbida 799 1 (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wrex 3142  cun 3937  wss 3939  {csn 4570  cfv 6358  (class class class)co 7159  Basecbs 16486  LSSumclsm 18762  LModclmod 19637  LSubSpclss 19706  LSpanclspn 19746  LVecclvec 19877  LSHypclsh 36115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-tpos 7895  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-subg 18279  df-cntz 18450  df-lsm 18764  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-drng 19507  df-lmod 19639  df-lss 19707  df-lsp 19747  df-lvec 19878  df-lshyp 36117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator