Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnel2N Structured version   Visualization version   GIF version

Theorem lshpnel2N 38986
Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpnel2.v 𝑉 = (Base‘𝑊)
lshpnel2.s 𝑆 = (LSubSp‘𝑊)
lshpnel2.n 𝑁 = (LSpan‘𝑊)
lshpnel2.p = (LSSum‘𝑊)
lshpnel2.h 𝐻 = (LSHyp‘𝑊)
lshpnel2.w (𝜑𝑊 ∈ LVec)
lshpnel2.u (𝜑𝑈𝑆)
lshpnel2.t (𝜑𝑈𝑉)
lshpnel2.x (𝜑𝑋𝑉)
lshpnel2.e (𝜑 → ¬ 𝑋𝑈)
Assertion
Ref Expression
lshpnel2N (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnel2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnel2.e . . . 4 (𝜑 → ¬ 𝑋𝑈)
21adantr 480 . . 3 ((𝜑𝑈𝐻) → ¬ 𝑋𝑈)
3 lshpnel2.v . . . 4 𝑉 = (Base‘𝑊)
4 lshpnel2.n . . . 4 𝑁 = (LSpan‘𝑊)
5 lshpnel2.p . . . 4 = (LSSum‘𝑊)
6 lshpnel2.h . . . 4 𝐻 = (LSHyp‘𝑊)
7 lshpnel2.w . . . . 5 (𝜑𝑊 ∈ LVec)
87adantr 480 . . . 4 ((𝜑𝑈𝐻) → 𝑊 ∈ LVec)
9 simpr 484 . . . 4 ((𝜑𝑈𝐻) → 𝑈𝐻)
10 lshpnel2.x . . . . 5 (𝜑𝑋𝑉)
1110adantr 480 . . . 4 ((𝜑𝑈𝐻) → 𝑋𝑉)
123, 4, 5, 6, 8, 9, 11lshpnelb 38985 . . 3 ((𝜑𝑈𝐻) → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
132, 12mpbid 232 . 2 ((𝜑𝑈𝐻) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
14 lshpnel2.u . . . 4 (𝜑𝑈𝑆)
1514adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑆)
16 lshpnel2.t . . . 4 (𝜑𝑈𝑉)
1716adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑉)
1810adantr 480 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
19 lveclmod 21105 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
207, 19syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
21 lshpnel2.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
2221, 4lspid 20980 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
2320, 14, 22syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁𝑈) = 𝑈)
2423uneq1d 4167 . . . . . . . 8 (𝜑 → ((𝑁𝑈) ∪ (𝑁‘{𝑋})) = (𝑈 ∪ (𝑁‘{𝑋})))
2524fveq2d 6910 . . . . . . 7 (𝜑 → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
263, 21lssss 20934 . . . . . . . . 9 (𝑈𝑆𝑈𝑉)
2714, 26syl 17 . . . . . . . 8 (𝜑𝑈𝑉)
2810snssd 4809 . . . . . . . 8 (𝜑 → {𝑋} ⊆ 𝑉)
293, 4lspun 20985 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
3020, 27, 28, 29syl3anc 1373 . . . . . . 7 (𝜑 → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
313, 21, 4lspsncl 20975 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
3220, 10, 31syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
3321, 4, 5lsmsp 21085 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3420, 14, 32, 33syl3anc 1373 . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3525, 30, 343eqtr4rd 2788 . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ {𝑋})))
3635eqeq1d 2739 . . . . 5 (𝜑 → ((𝑈 (𝑁‘{𝑋})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
3736biimpa 476 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)
38 sneq 4636 . . . . . . 7 (𝑣 = 𝑋 → {𝑣} = {𝑋})
3938uneq2d 4168 . . . . . 6 (𝑣 = 𝑋 → (𝑈 ∪ {𝑣}) = (𝑈 ∪ {𝑋}))
4039fveqeq2d 6914 . . . . 5 (𝑣 = 𝑋 → ((𝑁‘(𝑈 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
4140rspcev 3622 . . . 4 ((𝑋𝑉 ∧ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
4218, 37, 41syl2anc 584 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
437adantr 480 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LVec)
443, 4, 21, 6islshp 38980 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4543, 44syl 17 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4615, 17, 42, 45mpbir3and 1343 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
4713, 46impbida 801 1 (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070  cun 3949  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  LSSumclsm 19652  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LVecclvec 21101  LSHypclsh 38976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lvec 21102  df-lshyp 38978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator