| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpnel2N | Structured version Visualization version GIF version | ||
| Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lshpnel2.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpnel2.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lshpnel2.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lshpnel2.p | ⊢ ⊕ = (LSSum‘𝑊) |
| lshpnel2.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpnel2.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lshpnel2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lshpnel2.t | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| lshpnel2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lshpnel2.e | ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| lshpnel2N | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpnel2.e | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → ¬ 𝑋 ∈ 𝑈) |
| 3 | lshpnel2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | lshpnel2.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | lshpnel2.p | . . . 4 ⊢ ⊕ = (LSSum‘𝑊) | |
| 6 | lshpnel2.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 7 | lshpnel2.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑊 ∈ LVec) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑈 ∈ 𝐻) | |
| 10 | lshpnel2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 11 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → 𝑋 ∈ 𝑉) |
| 12 | 3, 4, 5, 6, 8, 9, 11 | lshpnelb 39002 | . . 3 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → (¬ 𝑋 ∈ 𝑈 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
| 13 | 2, 12 | mpbid 232 | . 2 ⊢ ((𝜑 ∧ 𝑈 ∈ 𝐻) → (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) |
| 14 | lshpnel2.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ∈ 𝑆) |
| 16 | lshpnel2.t | . . . 4 ⊢ (𝜑 → 𝑈 ≠ 𝑉) | |
| 17 | 16 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ≠ 𝑉) |
| 18 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑋 ∈ 𝑉) |
| 19 | lveclmod 21033 | . . . . . . . . . . 11 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 20 | 7, 19 | syl 17 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 21 | lshpnel2.s | . . . . . . . . . . 11 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 22 | 21, 4 | lspid 20908 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| 23 | 20, 14, 22 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘𝑈) = 𝑈) |
| 24 | 23 | uneq1d 4115 | . . . . . . . 8 ⊢ (𝜑 → ((𝑁‘𝑈) ∪ (𝑁‘{𝑋})) = (𝑈 ∪ (𝑁‘{𝑋}))) |
| 25 | 24 | fveq2d 6821 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
| 26 | 3, 21 | lssss 20862 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 27 | 14, 26 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 28 | 10 | snssd 4759 | . . . . . . . 8 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
| 29 | 3, 4 | lspun 20913 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋})))) |
| 30 | 20, 27, 28, 29 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑋})))) |
| 31 | 3, 21, 4 | lspsncl 20903 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 32 | 20, 10, 31 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆) |
| 33 | 21, 4, 5 | lsmsp 21013 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
| 34 | 20, 14, 32, 33 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋})))) |
| 35 | 25, 30, 34 | 3eqtr4rd 2776 | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ {𝑋}))) |
| 36 | 35 | eqeq1d 2732 | . . . . 5 ⊢ (𝜑 → ((𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)) |
| 37 | 36 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) |
| 38 | sneq 4584 | . . . . . . 7 ⊢ (𝑣 = 𝑋 → {𝑣} = {𝑋}) | |
| 39 | 38 | uneq2d 4116 | . . . . . 6 ⊢ (𝑣 = 𝑋 → (𝑈 ∪ {𝑣}) = (𝑈 ∪ {𝑋})) |
| 40 | 39 | fveqeq2d 6825 | . . . . 5 ⊢ (𝑣 = 𝑋 → ((𝑁‘(𝑈 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)) |
| 41 | 40 | rspcev 3575 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) → ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) |
| 42 | 18, 37, 41 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) |
| 43 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LVec) |
| 44 | 3, 4, 21, 6 | islshp 38997 | . . . 4 ⊢ (𝑊 ∈ LVec → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 45 | 43, 44 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 46 | 15, 17, 42, 45 | mpbir3and 1343 | . 2 ⊢ ((𝜑 ∧ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉) → 𝑈 ∈ 𝐻) |
| 47 | 13, 46 | impbida 800 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ⊕ (𝑁‘{𝑋})) = 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 ∪ cun 3898 ⊆ wss 3900 {csn 4574 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 LSSumclsm 19539 LModclmod 20786 LSubSpclss 20857 LSpanclspn 20897 LVecclvec 21029 LSHypclsh 38993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-subg 19028 df-cntz 19222 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lvec 21030 df-lshyp 38995 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |