Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpnel2N Structured version   Visualization version   GIF version

Theorem lshpnel2N 38972
Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lshpnel2.v 𝑉 = (Base‘𝑊)
lshpnel2.s 𝑆 = (LSubSp‘𝑊)
lshpnel2.n 𝑁 = (LSpan‘𝑊)
lshpnel2.p = (LSSum‘𝑊)
lshpnel2.h 𝐻 = (LSHyp‘𝑊)
lshpnel2.w (𝜑𝑊 ∈ LVec)
lshpnel2.u (𝜑𝑈𝑆)
lshpnel2.t (𝜑𝑈𝑉)
lshpnel2.x (𝜑𝑋𝑉)
lshpnel2.e (𝜑 → ¬ 𝑋𝑈)
Assertion
Ref Expression
lshpnel2N (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))

Proof of Theorem lshpnel2N
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpnel2.e . . . 4 (𝜑 → ¬ 𝑋𝑈)
21adantr 480 . . 3 ((𝜑𝑈𝐻) → ¬ 𝑋𝑈)
3 lshpnel2.v . . . 4 𝑉 = (Base‘𝑊)
4 lshpnel2.n . . . 4 𝑁 = (LSpan‘𝑊)
5 lshpnel2.p . . . 4 = (LSSum‘𝑊)
6 lshpnel2.h . . . 4 𝐻 = (LSHyp‘𝑊)
7 lshpnel2.w . . . . 5 (𝜑𝑊 ∈ LVec)
87adantr 480 . . . 4 ((𝜑𝑈𝐻) → 𝑊 ∈ LVec)
9 simpr 484 . . . 4 ((𝜑𝑈𝐻) → 𝑈𝐻)
10 lshpnel2.x . . . . 5 (𝜑𝑋𝑉)
1110adantr 480 . . . 4 ((𝜑𝑈𝐻) → 𝑋𝑉)
123, 4, 5, 6, 8, 9, 11lshpnelb 38971 . . 3 ((𝜑𝑈𝐻) → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
132, 12mpbid 232 . 2 ((𝜑𝑈𝐻) → (𝑈 (𝑁‘{𝑋})) = 𝑉)
14 lshpnel2.u . . . 4 (𝜑𝑈𝑆)
1514adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑆)
16 lshpnel2.t . . . 4 (𝜑𝑈𝑉)
1716adantr 480 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝑉)
1810adantr 480 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑋𝑉)
19 lveclmod 21046 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
207, 19syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
21 lshpnel2.s . . . . . . . . . . 11 𝑆 = (LSubSp‘𝑊)
2221, 4lspid 20921 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
2320, 14, 22syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑁𝑈) = 𝑈)
2423uneq1d 4126 . . . . . . . 8 (𝜑 → ((𝑁𝑈) ∪ (𝑁‘{𝑋})) = (𝑈 ∪ (𝑁‘{𝑋})))
2524fveq2d 6844 . . . . . . 7 (𝜑 → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
263, 21lssss 20875 . . . . . . . . 9 (𝑈𝑆𝑈𝑉)
2714, 26syl 17 . . . . . . . 8 (𝜑𝑈𝑉)
2810snssd 4769 . . . . . . . 8 (𝜑 → {𝑋} ⊆ 𝑉)
293, 4lspun 20926 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑋} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
3020, 27, 28, 29syl3anc 1373 . . . . . . 7 (𝜑 → (𝑁‘(𝑈 ∪ {𝑋})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑋}))))
313, 21, 4lspsncl 20916 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ 𝑆)
3220, 10, 31syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋}) ∈ 𝑆)
3321, 4, 5lsmsp 21026 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑋}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3420, 14, 32, 33syl3anc 1373 . . . . . . 7 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑋}))))
3525, 30, 343eqtr4rd 2775 . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑋})) = (𝑁‘(𝑈 ∪ {𝑋})))
3635eqeq1d 2731 . . . . 5 (𝜑 → ((𝑈 (𝑁‘{𝑋})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
3736biimpa 476 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉)
38 sneq 4595 . . . . . . 7 (𝑣 = 𝑋 → {𝑣} = {𝑋})
3938uneq2d 4127 . . . . . 6 (𝑣 = 𝑋 → (𝑈 ∪ {𝑣}) = (𝑈 ∪ {𝑋}))
4039fveqeq2d 6848 . . . . 5 (𝑣 = 𝑋 → ((𝑁‘(𝑈 ∪ {𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉))
4140rspcev 3585 . . . 4 ((𝑋𝑉 ∧ (𝑁‘(𝑈 ∪ {𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
4218, 37, 41syl2anc 584 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)
437adantr 480 . . . 4 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑊 ∈ LVec)
443, 4, 21, 6islshp 38966 . . . 4 (𝑊 ∈ LVec → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4543, 44syl 17 . . 3 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
4615, 17, 42, 45mpbir3and 1343 . 2 ((𝜑 ∧ (𝑈 (𝑁‘{𝑋})) = 𝑉) → 𝑈𝐻)
4713, 46impbida 800 1 (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cun 3909  wss 3911  {csn 4585  cfv 6499  (class class class)co 7369  Basecbs 17156  LSSumclsm 19549  LModclmod 20799  LSubSpclss 20870  LSpanclspn 20910  LVecclvec 21042  LSHypclsh 38962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-3 12228  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-0g 17381  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-cntz 19232  df-lsm 19551  df-cmn 19697  df-abl 19698  df-mgp 20062  df-rng 20074  df-ur 20103  df-ring 20156  df-oppr 20258  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lvec 21043  df-lshyp 38964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator