Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshp Structured version   Visualization version   GIF version

Theorem lkrshp 39091
Description: The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrshp.v 𝑉 = (Base‘𝑊)
lkrshp.d 𝐷 = (Scalar‘𝑊)
lkrshp.z 0 = (0g𝐷)
lkrshp.h 𝐻 = (LSHyp‘𝑊)
lkrshp.f 𝐹 = (LFnl‘𝑊)
lkrshp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrshp ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)

Proof of Theorem lkrshp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 21045 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LMod)
3 simp2 1137 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺𝐹)
4 lkrshp.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrshp.k . . . 4 𝐾 = (LKer‘𝑊)
6 eqid 2729 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 39081 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp3 1138 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 }))
10 lkrshp.d . . . . . 6 𝐷 = (Scalar‘𝑊)
11 lkrshp.z . . . . . 6 0 = (0g𝐷)
12 lkrshp.v . . . . . 6 𝑉 = (Base‘𝑊)
1310, 11, 12, 4, 5lkr0f 39080 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
142, 3, 13syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1514necon3bid 2969 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ≠ 𝑉𝐺 ≠ (𝑉 × { 0 })))
169, 15mpbird 257 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ≠ 𝑉)
17 eqid 2729 . . . 4 (1r𝐷) = (1r𝐷)
1810, 11, 17, 12, 4lfl1 39056 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 (𝐺𝑣) = (1r𝐷))
19 simp11 1204 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑊 ∈ LVec)
20 simp2 1137 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑣𝑉)
21 simp12 1205 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝐺𝐹)
22 simp3 1138 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) = (1r𝐷))
2310lvecdrng 21044 . . . . . . . . 9 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2411, 17drngunz 20667 . . . . . . . . 9 (𝐷 ∈ DivRing → (1r𝐷) ≠ 0 )
2519, 23, 243syl 18 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (1r𝐷) ≠ 0 )
2622, 25eqnetrd 2992 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) ≠ 0 )
27 simpl11 1249 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑊 ∈ LVec)
28 simpl12 1250 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝐺𝐹)
29 simpr 484 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (𝐾𝐺))
3010, 11, 4, 5lkrf0 39079 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3127, 28, 29, 30syl3anc 1373 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3231ex 412 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝑣 ∈ (𝐾𝐺) → (𝐺𝑣) = 0 ))
3332necon3ad 2938 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((𝐺𝑣) ≠ 0 → ¬ 𝑣 ∈ (𝐾𝐺)))
3426, 33mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ¬ 𝑣 ∈ (𝐾𝐺))
35 eqid 2729 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
3612, 35, 4, 5lkrlsp3 39090 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑣𝑉𝐺𝐹) ∧ ¬ 𝑣 ∈ (𝐾𝐺)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
3719, 20, 21, 34, 36syl121anc 1377 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
38373expia 1121 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉) → ((𝐺𝑣) = (1r𝐷) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
3938reximdva 3146 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑣𝑉 (𝐺𝑣) = (1r𝐷) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
4018, 39mpd 15 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
41 lkrshp.h . . . 4 𝐻 = (LSHyp‘𝑊)
4212, 35, 6, 41islshp 38965 . . 3 (𝑊 ∈ LVec → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
43423ad2ant1 1133 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
448, 16, 40, 43mpbir3and 1343 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cun 3909  {csn 4585   × cxp 5629  cfv 6499  Basecbs 17155  Scalarcsca 17199  0gc0g 17378  1rcur 20101  DivRingcdr 20649  LModclmod 20798  LSubSpclss 20869  LSpanclspn 20909  LVecclvec 21041  LSHypclsh 38961  LFnlclfn 39043  LKerclk 39071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lvec 21042  df-lshyp 38963  df-lfl 39044  df-lkr 39072
This theorem is referenced by:  lkrshp3  39092  lkrshpor  39093  lshpset2N  39105  lfl1dim  39107  lfl1dim2N  39108  hdmaplkr  41900
  Copyright terms: Public domain W3C validator