Step | Hyp | Ref
| Expression |
1 | | lveclmod 20368 |
. . . 4
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
2 | 1 | 3ad2ant1 1132 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LMod) |
3 | | simp2 1136 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ∈ 𝐹) |
4 | | lkrshp.f |
. . . 4
⊢ 𝐹 = (LFnl‘𝑊) |
5 | | lkrshp.k |
. . . 4
⊢ 𝐾 = (LKer‘𝑊) |
6 | | eqid 2738 |
. . . 4
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
7 | 4, 5, 6 | lkrlss 37109 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
8 | 2, 3, 7 | syl2anc 584 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ (LSubSp‘𝑊)) |
9 | | simp3 1137 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 })) |
10 | | lkrshp.d |
. . . . . 6
⊢ 𝐷 = (Scalar‘𝑊) |
11 | | lkrshp.z |
. . . . . 6
⊢ 0 =
(0g‘𝐷) |
12 | | lkrshp.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑊) |
13 | 10, 11, 12, 4, 5 | lkr0f 37108 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
14 | 2, 3, 13 | syl2anc 584 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ((𝐾‘𝐺) = 𝑉 ↔ 𝐺 = (𝑉 × { 0 }))) |
15 | 14 | necon3bid 2988 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ((𝐾‘𝐺) ≠ 𝑉 ↔ 𝐺 ≠ (𝑉 × { 0 }))) |
16 | 9, 15 | mpbird 256 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ≠ 𝑉) |
17 | | eqid 2738 |
. . . 4
⊢
(1r‘𝐷) = (1r‘𝐷) |
18 | 10, 11, 17, 12, 4 | lfl1 37084 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣 ∈ 𝑉 (𝐺‘𝑣) = (1r‘𝐷)) |
19 | | simp11 1202 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → 𝑊 ∈ LVec) |
20 | | simp2 1136 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → 𝑣 ∈ 𝑉) |
21 | | simp12 1203 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → 𝐺 ∈ 𝐹) |
22 | | simp3 1137 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → (𝐺‘𝑣) = (1r‘𝐷)) |
23 | 10 | lvecdrng 20367 |
. . . . . . . . 9
⊢ (𝑊 ∈ LVec → 𝐷 ∈
DivRing) |
24 | 11, 17 | drngunz 20006 |
. . . . . . . . 9
⊢ (𝐷 ∈ DivRing →
(1r‘𝐷)
≠ 0
) |
25 | 19, 23, 24 | 3syl 18 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → (1r‘𝐷) ≠ 0 ) |
26 | 22, 25 | eqnetrd 3011 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → (𝐺‘𝑣) ≠ 0 ) |
27 | | simpl11 1247 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) ∧ 𝑣 ∈ (𝐾‘𝐺)) → 𝑊 ∈ LVec) |
28 | | simpl12 1248 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) ∧ 𝑣 ∈ (𝐾‘𝐺)) → 𝐺 ∈ 𝐹) |
29 | | simpr 485 |
. . . . . . . . . 10
⊢ ((((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) ∧ 𝑣 ∈ (𝐾‘𝐺)) → 𝑣 ∈ (𝐾‘𝐺)) |
30 | 10, 11, 4, 5 | lkrf0 37107 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑣 ∈ (𝐾‘𝐺)) → (𝐺‘𝑣) = 0 ) |
31 | 27, 28, 29, 30 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) ∧ 𝑣 ∈ (𝐾‘𝐺)) → (𝐺‘𝑣) = 0 ) |
32 | 31 | ex 413 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → (𝑣 ∈ (𝐾‘𝐺) → (𝐺‘𝑣) = 0 )) |
33 | 32 | necon3ad 2956 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → ((𝐺‘𝑣) ≠ 0 → ¬ 𝑣 ∈ (𝐾‘𝐺))) |
34 | 26, 33 | mpd 15 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → ¬ 𝑣 ∈ (𝐾‘𝐺)) |
35 | | eqid 2738 |
. . . . . . 7
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
36 | 12, 35, 4, 5 | lkrlsp3 37118 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ (𝑣 ∈ 𝑉 ∧ 𝐺 ∈ 𝐹) ∧ ¬ 𝑣 ∈ (𝐾‘𝐺)) → ((LSpan‘𝑊)‘((𝐾‘𝐺) ∪ {𝑣})) = 𝑉) |
37 | 19, 20, 21, 34, 36 | syl121anc 1374 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉 ∧ (𝐺‘𝑣) = (1r‘𝐷)) → ((LSpan‘𝑊)‘((𝐾‘𝐺) ∪ {𝑣})) = 𝑉) |
38 | 37 | 3expia 1120 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣 ∈ 𝑉) → ((𝐺‘𝑣) = (1r‘𝐷) → ((LSpan‘𝑊)‘((𝐾‘𝐺) ∪ {𝑣})) = 𝑉)) |
39 | 38 | reximdva 3203 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (∃𝑣 ∈ 𝑉 (𝐺‘𝑣) = (1r‘𝐷) → ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝐺) ∪ {𝑣})) = 𝑉)) |
40 | 18, 39 | mpd 15 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝐺) ∪ {𝑣})) = 𝑉) |
41 | | lkrshp.h |
. . . 4
⊢ 𝐻 = (LSHyp‘𝑊) |
42 | 12, 35, 6, 41 | islshp 36993 |
. . 3
⊢ (𝑊 ∈ LVec → ((𝐾‘𝐺) ∈ 𝐻 ↔ ((𝐾‘𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝐺) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝐺) ∪ {𝑣})) = 𝑉))) |
43 | 42 | 3ad2ant1 1132 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → ((𝐾‘𝐺) ∈ 𝐻 ↔ ((𝐾‘𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾‘𝐺) ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘((𝐾‘𝐺) ∪ {𝑣})) = 𝑉))) |
44 | 8, 16, 40, 43 | mpbir3and 1341 |
1
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝐺 ≠ (𝑉 × { 0 })) → (𝐾‘𝐺) ∈ 𝐻) |