Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshp Structured version   Visualization version   GIF version

Theorem lkrshp 37380
Description: The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrshp.v 𝑉 = (Base‘𝑊)
lkrshp.d 𝐷 = (Scalar‘𝑊)
lkrshp.z 0 = (0g𝐷)
lkrshp.h 𝐻 = (LSHyp‘𝑊)
lkrshp.f 𝐹 = (LFnl‘𝑊)
lkrshp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrshp ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)

Proof of Theorem lkrshp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 20474 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1132 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LMod)
3 simp2 1136 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺𝐹)
4 lkrshp.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrshp.k . . . 4 𝐾 = (LKer‘𝑊)
6 eqid 2736 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 37370 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp3 1137 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 }))
10 lkrshp.d . . . . . 6 𝐷 = (Scalar‘𝑊)
11 lkrshp.z . . . . . 6 0 = (0g𝐷)
12 lkrshp.v . . . . . 6 𝑉 = (Base‘𝑊)
1310, 11, 12, 4, 5lkr0f 37369 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
142, 3, 13syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1514necon3bid 2985 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ≠ 𝑉𝐺 ≠ (𝑉 × { 0 })))
169, 15mpbird 256 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ≠ 𝑉)
17 eqid 2736 . . . 4 (1r𝐷) = (1r𝐷)
1810, 11, 17, 12, 4lfl1 37345 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 (𝐺𝑣) = (1r𝐷))
19 simp11 1202 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑊 ∈ LVec)
20 simp2 1136 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑣𝑉)
21 simp12 1203 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝐺𝐹)
22 simp3 1137 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) = (1r𝐷))
2310lvecdrng 20473 . . . . . . . . 9 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2411, 17drngunz 20111 . . . . . . . . 9 (𝐷 ∈ DivRing → (1r𝐷) ≠ 0 )
2519, 23, 243syl 18 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (1r𝐷) ≠ 0 )
2622, 25eqnetrd 3008 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) ≠ 0 )
27 simpl11 1247 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑊 ∈ LVec)
28 simpl12 1248 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝐺𝐹)
29 simpr 485 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (𝐾𝐺))
3010, 11, 4, 5lkrf0 37368 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3127, 28, 29, 30syl3anc 1370 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3231ex 413 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝑣 ∈ (𝐾𝐺) → (𝐺𝑣) = 0 ))
3332necon3ad 2953 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((𝐺𝑣) ≠ 0 → ¬ 𝑣 ∈ (𝐾𝐺)))
3426, 33mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ¬ 𝑣 ∈ (𝐾𝐺))
35 eqid 2736 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
3612, 35, 4, 5lkrlsp3 37379 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑣𝑉𝐺𝐹) ∧ ¬ 𝑣 ∈ (𝐾𝐺)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
3719, 20, 21, 34, 36syl121anc 1374 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
38373expia 1120 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉) → ((𝐺𝑣) = (1r𝐷) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
3938reximdva 3161 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑣𝑉 (𝐺𝑣) = (1r𝐷) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
4018, 39mpd 15 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
41 lkrshp.h . . . 4 𝐻 = (LSHyp‘𝑊)
4212, 35, 6, 41islshp 37254 . . 3 (𝑊 ∈ LVec → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
43423ad2ant1 1132 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
448, 16, 40, 43mpbir3and 1341 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wrex 3070  cun 3896  {csn 4573   × cxp 5618  cfv 6479  Basecbs 17009  Scalarcsca 17062  0gc0g 17247  1rcur 19832  DivRingcdr 20093  LModclmod 20229  LSubSpclss 20299  LSpanclspn 20339  LVecclvec 20470  LSHypclsh 37250  LFnlclfn 37332  LKerclk 37360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-tpos 8112  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-grp 18676  df-minusg 18677  df-sbg 18678  df-subg 18848  df-cntz 19019  df-lsm 19337  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-drng 20095  df-lmod 20231  df-lss 20300  df-lsp 20340  df-lvec 20471  df-lshyp 37252  df-lfl 37333  df-lkr 37361
This theorem is referenced by:  lkrshp3  37381  lkrshpor  37382  lshpset2N  37394  lfl1dim  37396  lfl1dim2N  37397  hdmaplkr  40189
  Copyright terms: Public domain W3C validator