Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshp Structured version   Visualization version   GIF version

Theorem lkrshp 39210
Description: The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrshp.v 𝑉 = (Base‘𝑊)
lkrshp.d 𝐷 = (Scalar‘𝑊)
lkrshp.z 0 = (0g𝐷)
lkrshp.h 𝐻 = (LSHyp‘𝑊)
lkrshp.f 𝐹 = (LFnl‘𝑊)
lkrshp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrshp ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)

Proof of Theorem lkrshp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 21046 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LMod)
3 simp2 1137 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺𝐹)
4 lkrshp.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrshp.k . . . 4 𝐾 = (LKer‘𝑊)
6 eqid 2731 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 39200 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp3 1138 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 }))
10 lkrshp.d . . . . . 6 𝐷 = (Scalar‘𝑊)
11 lkrshp.z . . . . . 6 0 = (0g𝐷)
12 lkrshp.v . . . . . 6 𝑉 = (Base‘𝑊)
1310, 11, 12, 4, 5lkr0f 39199 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
142, 3, 13syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1514necon3bid 2972 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ≠ 𝑉𝐺 ≠ (𝑉 × { 0 })))
169, 15mpbird 257 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ≠ 𝑉)
17 eqid 2731 . . . 4 (1r𝐷) = (1r𝐷)
1810, 11, 17, 12, 4lfl1 39175 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 (𝐺𝑣) = (1r𝐷))
19 simp11 1204 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑊 ∈ LVec)
20 simp2 1137 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑣𝑉)
21 simp12 1205 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝐺𝐹)
22 simp3 1138 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) = (1r𝐷))
2310lvecdrng 21045 . . . . . . . . 9 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2411, 17drngunz 20668 . . . . . . . . 9 (𝐷 ∈ DivRing → (1r𝐷) ≠ 0 )
2519, 23, 243syl 18 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (1r𝐷) ≠ 0 )
2622, 25eqnetrd 2995 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) ≠ 0 )
27 simpl11 1249 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑊 ∈ LVec)
28 simpl12 1250 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝐺𝐹)
29 simpr 484 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (𝐾𝐺))
3010, 11, 4, 5lkrf0 39198 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3127, 28, 29, 30syl3anc 1373 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3231ex 412 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝑣 ∈ (𝐾𝐺) → (𝐺𝑣) = 0 ))
3332necon3ad 2941 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((𝐺𝑣) ≠ 0 → ¬ 𝑣 ∈ (𝐾𝐺)))
3426, 33mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ¬ 𝑣 ∈ (𝐾𝐺))
35 eqid 2731 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
3612, 35, 4, 5lkrlsp3 39209 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑣𝑉𝐺𝐹) ∧ ¬ 𝑣 ∈ (𝐾𝐺)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
3719, 20, 21, 34, 36syl121anc 1377 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
38373expia 1121 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉) → ((𝐺𝑣) = (1r𝐷) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
3938reximdva 3145 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑣𝑉 (𝐺𝑣) = (1r𝐷) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
4018, 39mpd 15 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
41 lkrshp.h . . . 4 𝐻 = (LSHyp‘𝑊)
4212, 35, 6, 41islshp 39084 . . 3 (𝑊 ∈ LVec → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
43423ad2ant1 1133 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
448, 16, 40, 43mpbir3and 1343 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cun 3895  {csn 4575   × cxp 5617  cfv 6487  Basecbs 17126  Scalarcsca 17170  0gc0g 17349  1rcur 20105  DivRingcdr 20650  LModclmod 20799  LSubSpclss 20870  LSpanclspn 20910  LVecclvec 21042  LSHypclsh 39080  LFnlclfn 39162  LKerclk 39190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19042  df-cntz 19235  df-lsm 19554  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lvec 21043  df-lshyp 39082  df-lfl 39163  df-lkr 39191
This theorem is referenced by:  lkrshp3  39211  lkrshpor  39212  lshpset2N  39224  lfl1dim  39226  lfl1dim2N  39227  hdmaplkr  42018
  Copyright terms: Public domain W3C validator