Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshp Structured version   Visualization version   GIF version

Theorem lkrshp 35181
Description: The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrshp.v 𝑉 = (Base‘𝑊)
lkrshp.d 𝐷 = (Scalar‘𝑊)
lkrshp.z 0 = (0g𝐷)
lkrshp.h 𝐻 = (LSHyp‘𝑊)
lkrshp.f 𝐹 = (LFnl‘𝑊)
lkrshp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrshp ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)

Proof of Theorem lkrshp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 19466 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1169 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LMod)
3 simp2 1173 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺𝐹)
4 lkrshp.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrshp.k . . . 4 𝐾 = (LKer‘𝑊)
6 eqid 2826 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 35171 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 581 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp3 1174 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 }))
10 lkrshp.d . . . . . 6 𝐷 = (Scalar‘𝑊)
11 lkrshp.z . . . . . 6 0 = (0g𝐷)
12 lkrshp.v . . . . . 6 𝑉 = (Base‘𝑊)
1310, 11, 12, 4, 5lkr0f 35170 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
142, 3, 13syl2anc 581 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1514necon3bid 3044 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ≠ 𝑉𝐺 ≠ (𝑉 × { 0 })))
169, 15mpbird 249 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ≠ 𝑉)
17 eqid 2826 . . . 4 (1r𝐷) = (1r𝐷)
1810, 11, 17, 12, 4lfl1 35146 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 (𝐺𝑣) = (1r𝐷))
19 simp11 1266 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑊 ∈ LVec)
20 simp2 1173 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑣𝑉)
21 simp12 1267 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝐺𝐹)
22 simp3 1174 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) = (1r𝐷))
2310lvecdrng 19465 . . . . . . . . 9 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2411, 17drngunz 19119 . . . . . . . . 9 (𝐷 ∈ DivRing → (1r𝐷) ≠ 0 )
2519, 23, 243syl 18 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (1r𝐷) ≠ 0 )
2622, 25eqnetrd 3067 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) ≠ 0 )
27 simpl11 1335 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑊 ∈ LVec)
28 simpl12 1337 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝐺𝐹)
29 simpr 479 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (𝐾𝐺))
3010, 11, 4, 5lkrf0 35169 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3127, 28, 29, 30syl3anc 1496 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3231ex 403 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝑣 ∈ (𝐾𝐺) → (𝐺𝑣) = 0 ))
3332necon3ad 3013 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((𝐺𝑣) ≠ 0 → ¬ 𝑣 ∈ (𝐾𝐺)))
3426, 33mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ¬ 𝑣 ∈ (𝐾𝐺))
35 eqid 2826 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
3612, 35, 4, 5lkrlsp3 35180 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑣𝑉𝐺𝐹) ∧ ¬ 𝑣 ∈ (𝐾𝐺)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
3719, 20, 21, 34, 36syl121anc 1500 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
38373expia 1156 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉) → ((𝐺𝑣) = (1r𝐷) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
3938reximdva 3226 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑣𝑉 (𝐺𝑣) = (1r𝐷) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
4018, 39mpd 15 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
41 lkrshp.h . . . 4 𝐻 = (LSHyp‘𝑊)
4212, 35, 6, 41islshp 35055 . . 3 (𝑊 ∈ LVec → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
43423ad2ant1 1169 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
448, 16, 40, 43mpbir3and 1448 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 3000  wrex 3119  cun 3797  {csn 4398   × cxp 5341  cfv 6124  Basecbs 16223  Scalarcsca 16309  0gc0g 16454  1rcur 18856  DivRingcdr 19104  LModclmod 19220  LSubSpclss 19289  LSpanclspn 19331  LVecclvec 19462  LSHypclsh 35051  LFnlclfn 35133  LKerclk 35161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-tpos 7618  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-mulr 16320  df-0g 16456  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-subg 17943  df-cntz 18101  df-lsm 18403  df-cmn 18549  df-abl 18550  df-mgp 18845  df-ur 18857  df-ring 18904  df-oppr 18978  df-dvdsr 18996  df-unit 18997  df-invr 19027  df-drng 19106  df-lmod 19222  df-lss 19290  df-lsp 19332  df-lvec 19463  df-lshyp 35053  df-lfl 35134  df-lkr 35162
This theorem is referenced by:  lkrshp3  35182  lkrshpor  35183  lshpset2N  35195  lfl1dim  35197  lfl1dim2N  35198  hdmaplkr  37989
  Copyright terms: Public domain W3C validator