Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkrshp Structured version   Visualization version   GIF version

Theorem lkrshp 39047
Description: The kernel of a nonzero functional is a hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lkrshp.v 𝑉 = (Base‘𝑊)
lkrshp.d 𝐷 = (Scalar‘𝑊)
lkrshp.z 0 = (0g𝐷)
lkrshp.h 𝐻 = (LSHyp‘𝑊)
lkrshp.f 𝐹 = (LFnl‘𝑊)
lkrshp.k 𝐾 = (LKer‘𝑊)
Assertion
Ref Expression
lkrshp ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)

Proof of Theorem lkrshp
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lveclmod 21078 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝑊 ∈ LMod)
3 simp2 1137 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺𝐹)
4 lkrshp.f . . . 4 𝐹 = (LFnl‘𝑊)
5 lkrshp.k . . . 4 𝐾 = (LKer‘𝑊)
6 eqid 2734 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
74, 5, 6lkrlss 39037 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
82, 3, 7syl2anc 584 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ (LSubSp‘𝑊))
9 simp3 1138 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → 𝐺 ≠ (𝑉 × { 0 }))
10 lkrshp.d . . . . . 6 𝐷 = (Scalar‘𝑊)
11 lkrshp.z . . . . . 6 0 = (0g𝐷)
12 lkrshp.v . . . . . 6 𝑉 = (Base‘𝑊)
1310, 11, 12, 4, 5lkr0f 39036 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
142, 3, 13syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × { 0 })))
1514necon3bid 2975 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ≠ 𝑉𝐺 ≠ (𝑉 × { 0 })))
169, 15mpbird 257 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ≠ 𝑉)
17 eqid 2734 . . . 4 (1r𝐷) = (1r𝐷)
1810, 11, 17, 12, 4lfl1 39012 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 (𝐺𝑣) = (1r𝐷))
19 simp11 1203 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑊 ∈ LVec)
20 simp2 1137 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝑣𝑉)
21 simp12 1204 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → 𝐺𝐹)
22 simp3 1138 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) = (1r𝐷))
2310lvecdrng 21077 . . . . . . . . 9 (𝑊 ∈ LVec → 𝐷 ∈ DivRing)
2411, 17drngunz 20720 . . . . . . . . 9 (𝐷 ∈ DivRing → (1r𝐷) ≠ 0 )
2519, 23, 243syl 18 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (1r𝐷) ≠ 0 )
2622, 25eqnetrd 2998 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝐺𝑣) ≠ 0 )
27 simpl11 1248 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑊 ∈ LVec)
28 simpl12 1249 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝐺𝐹)
29 simpr 484 . . . . . . . . . 10 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → 𝑣 ∈ (𝐾𝐺))
3010, 11, 4, 5lkrf0 39035 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3127, 28, 29, 30syl3anc 1372 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) ∧ 𝑣 ∈ (𝐾𝐺)) → (𝐺𝑣) = 0 )
3231ex 412 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → (𝑣 ∈ (𝐾𝐺) → (𝐺𝑣) = 0 ))
3332necon3ad 2944 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((𝐺𝑣) ≠ 0 → ¬ 𝑣 ∈ (𝐾𝐺)))
3426, 33mpd 15 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ¬ 𝑣 ∈ (𝐾𝐺))
35 eqid 2734 . . . . . . 7 (LSpan‘𝑊) = (LSpan‘𝑊)
3612, 35, 4, 5lkrlsp3 39046 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑣𝑉𝐺𝐹) ∧ ¬ 𝑣 ∈ (𝐾𝐺)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
3719, 20, 21, 34, 36syl121anc 1376 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉 ∧ (𝐺𝑣) = (1r𝐷)) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
38373expia 1121 . . . 4 (((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) ∧ 𝑣𝑉) → ((𝐺𝑣) = (1r𝐷) → ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
3938reximdva 3155 . . 3 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (∃𝑣𝑉 (𝐺𝑣) = (1r𝐷) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉))
4018, 39mpd 15 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)
41 lkrshp.h . . . 4 𝐻 = (LSHyp‘𝑊)
4212, 35, 6, 41islshp 38921 . . 3 (𝑊 ∈ LVec → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
43423ad2ant1 1133 . 2 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → ((𝐾𝐺) ∈ 𝐻 ↔ ((𝐾𝐺) ∈ (LSubSp‘𝑊) ∧ (𝐾𝐺) ≠ 𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘((𝐾𝐺) ∪ {𝑣})) = 𝑉)))
448, 16, 40, 43mpbir3and 1342 1 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝐺 ≠ (𝑉 × { 0 })) → (𝐾𝐺) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  cun 3931  {csn 4608   × cxp 5665  cfv 6542  Basecbs 17230  Scalarcsca 17280  0gc0g 17460  1rcur 20151  DivRingcdr 20702  LModclmod 20831  LSubSpclss 20902  LSpanclspn 20942  LVecclvec 21074  LSHypclsh 38917  LFnlclfn 38999  LKerclk 39027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-tpos 8234  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-mulr 17291  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-submnd 18771  df-grp 18928  df-minusg 18929  df-sbg 18930  df-subg 19115  df-cntz 19309  df-lsm 19627  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20123  df-ur 20152  df-ring 20205  df-oppr 20307  df-dvdsr 20330  df-unit 20331  df-invr 20361  df-drng 20704  df-lmod 20833  df-lss 20903  df-lsp 20943  df-lvec 21075  df-lshyp 38919  df-lfl 39000  df-lkr 39028
This theorem is referenced by:  lkrshp3  39048  lkrshpor  39049  lshpset2N  39061  lfl1dim  39063  lfl1dim2N  39064  hdmaplkr  41856
  Copyright terms: Public domain W3C validator