Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne | Structured version Visualization version GIF version |
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lshpne.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpne.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpne.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshpne.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshpne | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpne.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
2 | lshpne.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lshpne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2736 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
6 | lshpne.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
7 | 3, 4, 5, 6 | islshp 37239 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)) |
10 | 9 | simp2d 1142 | 1 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∃wrex 3070 ∪ cun 3895 {csn 4572 ‘cfv 6473 Basecbs 17001 LModclmod 20221 LSubSpclss 20291 LSpanclspn 20331 LSHypclsh 37235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-lshyp 37237 |
This theorem is referenced by: lshpnel 37243 lshpcmp 37248 lkrshp3 37366 lkrshp4 37368 dochshpncl 39645 dochlkr 39646 dochkrshp 39647 dochsatshpb 39713 |
Copyright terms: Public domain | W3C validator |