| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne | Structured version Visualization version GIF version | ||
| Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpne.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpne.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpne.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lshpne.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| Ref | Expression |
|---|---|
| lshpne | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpne.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 2 | lshpne.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lshpne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 6 | lshpne.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 7 | 3, 4, 5, 6 | islshp 38997 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 10 | 9 | simp2d 1143 | 1 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 ∪ cun 3898 {csn 4574 ‘cfv 6477 Basecbs 17112 LModclmod 20786 LSubSpclss 20857 LSpanclspn 20897 LSHypclsh 38993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-lshyp 38995 |
| This theorem is referenced by: lshpnel 39001 lshpcmp 39006 lkrshp3 39124 lkrshp4 39126 dochshpncl 41402 dochlkr 41403 dochkrshp 41404 dochsatshpb 41470 |
| Copyright terms: Public domain | W3C validator |