Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpne Structured version   Visualization version   GIF version

Theorem lshpne 37840
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lshpne.v 𝑉 = (Baseβ€˜π‘Š)
lshpne.h 𝐻 = (LSHypβ€˜π‘Š)
lshpne.w (πœ‘ β†’ π‘Š ∈ LMod)
lshpne.u (πœ‘ β†’ π‘ˆ ∈ 𝐻)
Assertion
Ref Expression
lshpne (πœ‘ β†’ π‘ˆ β‰  𝑉)

Proof of Theorem lshpne
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpne.u . . 3 (πœ‘ β†’ π‘ˆ ∈ 𝐻)
2 lshpne.w . . . 4 (πœ‘ β†’ π‘Š ∈ LMod)
3 lshpne.v . . . . 5 𝑉 = (Baseβ€˜π‘Š)
4 eqid 2732 . . . . 5 (LSpanβ€˜π‘Š) = (LSpanβ€˜π‘Š)
5 eqid 2732 . . . . 5 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
6 lshpne.h . . . . 5 𝐻 = (LSHypβ€˜π‘Š)
73, 4, 5, 6islshp 37837 . . . 4 (π‘Š ∈ LMod β†’ (π‘ˆ ∈ 𝐻 ↔ (π‘ˆ ∈ (LSubSpβ€˜π‘Š) ∧ π‘ˆ β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 ((LSpanβ€˜π‘Š)β€˜(π‘ˆ βˆͺ {𝑣})) = 𝑉)))
82, 7syl 17 . . 3 (πœ‘ β†’ (π‘ˆ ∈ 𝐻 ↔ (π‘ˆ ∈ (LSubSpβ€˜π‘Š) ∧ π‘ˆ β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 ((LSpanβ€˜π‘Š)β€˜(π‘ˆ βˆͺ {𝑣})) = 𝑉)))
91, 8mpbid 231 . 2 (πœ‘ β†’ (π‘ˆ ∈ (LSubSpβ€˜π‘Š) ∧ π‘ˆ β‰  𝑉 ∧ βˆƒπ‘£ ∈ 𝑉 ((LSpanβ€˜π‘Š)β€˜(π‘ˆ βˆͺ {𝑣})) = 𝑉))
109simp2d 1143 1 (πœ‘ β†’ π‘ˆ β‰  𝑉)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   βˆͺ cun 3945  {csn 4627  β€˜cfv 6540  Basecbs 17140  LModclmod 20463  LSubSpclss 20534  LSpanclspn 20574  LSHypclsh 37833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-lshyp 37835
This theorem is referenced by:  lshpnel  37841  lshpcmp  37846  lkrshp3  37964  lkrshp4  37966  dochshpncl  40243  dochlkr  40244  dochkrshp  40245  dochsatshpb  40311
  Copyright terms: Public domain W3C validator