Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpne Structured version   Visualization version   GIF version

Theorem lshpne 39005
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lshpne.v 𝑉 = (Base‘𝑊)
lshpne.h 𝐻 = (LSHyp‘𝑊)
lshpne.w (𝜑𝑊 ∈ LMod)
lshpne.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshpne (𝜑𝑈𝑉)

Proof of Theorem lshpne
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpne.u . . 3 (𝜑𝑈𝐻)
2 lshpne.w . . . 4 (𝜑𝑊 ∈ LMod)
3 lshpne.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2736 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 eqid 2736 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
6 lshpne.h . . . . 5 𝐻 = (LSHyp‘𝑊)
73, 4, 5, 6islshp 39002 . . . 4 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)))
82, 7syl 17 . . 3 (𝜑 → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)))
91, 8mpbid 232 . 2 (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))
109simp2d 1143 1 (𝜑𝑈𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  cun 3929  {csn 4606  cfv 6536  Basecbs 17233  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  LSHypclsh 38998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-lshyp 39000
This theorem is referenced by:  lshpnel  39006  lshpcmp  39011  lkrshp3  39129  lkrshp4  39131  dochshpncl  41408  dochlkr  41409  dochkrshp  41410  dochsatshpb  41476
  Copyright terms: Public domain W3C validator