![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne | Structured version Visualization version GIF version |
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lshpne.v | β’ π = (Baseβπ) |
lshpne.h | β’ π» = (LSHypβπ) |
lshpne.w | β’ (π β π β LMod) |
lshpne.u | β’ (π β π β π») |
Ref | Expression |
---|---|
lshpne | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpne.u | . . 3 β’ (π β π β π») | |
2 | lshpne.w | . . . 4 β’ (π β π β LMod) | |
3 | lshpne.v | . . . . 5 β’ π = (Baseβπ) | |
4 | eqid 2732 | . . . . 5 β’ (LSpanβπ) = (LSpanβπ) | |
5 | eqid 2732 | . . . . 5 β’ (LSubSpβπ) = (LSubSpβπ) | |
6 | lshpne.h | . . . . 5 β’ π» = (LSHypβπ) | |
7 | 3, 4, 5, 6 | islshp 37837 | . . . 4 β’ (π β LMod β (π β π» β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π ((LSpanβπ)β(π βͺ {π£})) = π))) |
8 | 2, 7 | syl 17 | . . 3 β’ (π β (π β π» β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π ((LSpanβπ)β(π βͺ {π£})) = π))) |
9 | 1, 8 | mpbid 231 | . 2 β’ (π β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π ((LSpanβπ)β(π βͺ {π£})) = π)) |
10 | 9 | simp2d 1143 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βwrex 3070 βͺ cun 3945 {csn 4627 βcfv 6540 Basecbs 17140 LModclmod 20463 LSubSpclss 20534 LSpanclspn 20574 LSHypclsh 37833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-lshyp 37835 |
This theorem is referenced by: lshpnel 37841 lshpcmp 37846 lkrshp3 37964 lkrshp4 37966 dochshpncl 40243 dochlkr 40244 dochkrshp 40245 dochsatshpb 40311 |
Copyright terms: Public domain | W3C validator |