Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne | Structured version Visualization version GIF version |
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lshpne.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpne.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpne.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshpne.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshpne | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpne.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
2 | lshpne.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lshpne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2738 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | eqid 2738 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
6 | lshpne.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
7 | 3, 4, 5, 6 | islshp 36993 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)) |
10 | 9 | simp2d 1142 | 1 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∪ cun 3885 {csn 4561 ‘cfv 6433 Basecbs 16912 LModclmod 20123 LSubSpclss 20193 LSpanclspn 20233 LSHypclsh 36989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-lshyp 36991 |
This theorem is referenced by: lshpnel 36997 lshpcmp 37002 lkrshp3 37120 lkrshp4 37122 dochshpncl 39398 dochlkr 39399 dochkrshp 39400 dochsatshpb 39466 |
Copyright terms: Public domain | W3C validator |