| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne | Structured version Visualization version GIF version | ||
| Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
| Ref | Expression |
|---|---|
| lshpne.v | ⊢ 𝑉 = (Base‘𝑊) |
| lshpne.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| lshpne.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lshpne.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
| Ref | Expression |
|---|---|
| lshpne | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lshpne.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
| 2 | lshpne.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lshpne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2736 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 5 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 6 | lshpne.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 7 | 3, 4, 5, 6 | islshp 39002 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 10 | 9 | simp2d 1143 | 1 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ∪ cun 3929 {csn 4606 ‘cfv 6536 Basecbs 17233 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 LSHypclsh 38998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-lshyp 39000 |
| This theorem is referenced by: lshpnel 39006 lshpcmp 39011 lkrshp3 39129 lkrshp4 39131 dochshpncl 41408 dochlkr 41409 dochkrshp 41410 dochsatshpb 41476 |
| Copyright terms: Public domain | W3C validator |