![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne | Structured version Visualization version GIF version |
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lshpne.v | β’ π = (Baseβπ) |
lshpne.h | β’ π» = (LSHypβπ) |
lshpne.w | β’ (π β π β LMod) |
lshpne.u | β’ (π β π β π») |
Ref | Expression |
---|---|
lshpne | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpne.u | . . 3 β’ (π β π β π») | |
2 | lshpne.w | . . . 4 β’ (π β π β LMod) | |
3 | lshpne.v | . . . . 5 β’ π = (Baseβπ) | |
4 | eqid 2726 | . . . . 5 β’ (LSpanβπ) = (LSpanβπ) | |
5 | eqid 2726 | . . . . 5 β’ (LSubSpβπ) = (LSubSpβπ) | |
6 | lshpne.h | . . . . 5 β’ π» = (LSHypβπ) | |
7 | 3, 4, 5, 6 | islshp 38360 | . . . 4 β’ (π β LMod β (π β π» β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π ((LSpanβπ)β(π βͺ {π£})) = π))) |
8 | 2, 7 | syl 17 | . . 3 β’ (π β (π β π» β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π ((LSpanβπ)β(π βͺ {π£})) = π))) |
9 | 1, 8 | mpbid 231 | . 2 β’ (π β (π β (LSubSpβπ) β§ π β π β§ βπ£ β π ((LSpanβπ)β(π βͺ {π£})) = π)) |
10 | 9 | simp2d 1140 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2934 βwrex 3064 βͺ cun 3941 {csn 4623 βcfv 6536 Basecbs 17151 LModclmod 20704 LSubSpclss 20776 LSpanclspn 20816 LSHypclsh 38356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-lshyp 38358 |
This theorem is referenced by: lshpnel 38364 lshpcmp 38369 lkrshp3 38487 lkrshp4 38489 dochshpncl 40766 dochlkr 40767 dochkrshp 40768 dochsatshpb 40834 |
Copyright terms: Public domain | W3C validator |