Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpne Structured version   Visualization version   GIF version

Theorem lshpne 38968
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lshpne.v 𝑉 = (Base‘𝑊)
lshpne.h 𝐻 = (LSHyp‘𝑊)
lshpne.w (𝜑𝑊 ∈ LMod)
lshpne.u (𝜑𝑈𝐻)
Assertion
Ref Expression
lshpne (𝜑𝑈𝑉)

Proof of Theorem lshpne
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lshpne.u . . 3 (𝜑𝑈𝐻)
2 lshpne.w . . . 4 (𝜑𝑊 ∈ LMod)
3 lshpne.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2729 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 eqid 2729 . . . . 5 (LSubSp‘𝑊) = (LSubSp‘𝑊)
6 lshpne.h . . . . 5 𝐻 = (LSHyp‘𝑊)
73, 4, 5, 6islshp 38965 . . . 4 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)))
82, 7syl 17 . . 3 (𝜑 → (𝑈𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)))
91, 8mpbid 232 . 2 (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈𝑉 ∧ ∃𝑣𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))
109simp2d 1143 1 (𝜑𝑈𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cun 3909  {csn 4585  cfv 6499  Basecbs 17155  LModclmod 20798  LSubSpclss 20869  LSpanclspn 20909  LSHypclsh 38961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-lshyp 38963
This theorem is referenced by:  lshpnel  38969  lshpcmp  38974  lkrshp3  39092  lkrshp4  39094  dochshpncl  41371  dochlkr  41372  dochkrshp  41373  dochsatshpb  41439
  Copyright terms: Public domain W3C validator