![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpne | Structured version Visualization version GIF version |
Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.) |
Ref | Expression |
---|---|
lshpne.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpne.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpne.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lshpne.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshpne | ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpne.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
2 | lshpne.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lshpne.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2740 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
6 | lshpne.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
7 | 3, 4, 5, 6 | islshp 38935 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉))) |
9 | 1, 8 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑈 ∈ (LSubSp‘𝑊) ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 ((LSpan‘𝑊)‘(𝑈 ∪ {𝑣})) = 𝑉)) |
10 | 9 | simp2d 1143 | 1 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 ∪ cun 3974 {csn 4648 ‘cfv 6573 Basecbs 17258 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 LSHypclsh 38931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-lshyp 38933 |
This theorem is referenced by: lshpnel 38939 lshpcmp 38944 lkrshp3 39062 lkrshp4 39064 dochshpncl 41341 dochlkr 41342 dochkrshp 41343 dochsatshpb 41409 |
Copyright terms: Public domain | W3C validator |