| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpsm | Structured version Visualization version GIF version | ||
| Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.) |
| Ref | Expression |
|---|---|
| islshpsm.v | ⊢ 𝑉 = (Base‘𝑊) |
| islshpsm.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islshpsm.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| islshpsm.p | ⊢ ⊕ = (LSSum‘𝑊) |
| islshpsm.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| islshpsm.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Ref | Expression |
|---|---|
| islshpsm | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islshpsm.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | islshpsm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | islshpsm.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | islshpsm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | islshpsm.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 6 | 2, 3, 4, 5 | islshp 38997 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 8 | 1 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 9 | simplrl 776 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝑆) | |
| 10 | 4, 3 | lspid 20939 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘𝑈) = 𝑈) |
| 12 | 11 | uneq1d 4142 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑁‘𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣}))) |
| 13 | 12 | fveq2d 6880 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
| 14 | 2, 4 | lssss 20893 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 15 | 9, 14 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ⊆ 𝑉) |
| 16 | snssi 4784 | . . . . . . . . . 10 ⊢ (𝑣 ∈ 𝑉 → {𝑣} ⊆ 𝑉) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → {𝑣} ⊆ 𝑉) |
| 18 | 2, 3 | lspun 20944 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
| 19 | 8, 15, 17, 18 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
| 20 | 2, 4, 3 | lspcl 20933 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
| 21 | 8, 17, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
| 22 | islshpsm.p | . . . . . . . . . 10 ⊢ ⊕ = (LSSum‘𝑊) | |
| 23 | 4, 3, 22 | lsmsp 21044 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
| 24 | 8, 9, 21, 23 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
| 25 | 13, 19, 24 | 3eqtr4rd 2781 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣}))) |
| 26 | 25 | eqeq1d 2737 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 27 | 26 | rexbidva 3162 | . . . . 5 ⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → (∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 28 | 27 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 29 | 28 | bicomd 223 | . . 3 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| 30 | df-3an 1088 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) | |
| 31 | df-3an 1088 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉)) | |
| 32 | 29, 30, 31 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| 33 | 7, 32 | bitrd 279 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∪ cun 3924 ⊆ wss 3926 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 LSSumclsm 19615 LModclmod 20817 LSubSpclss 20888 LSpanclspn 20928 LSHypclsh 38993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lshyp 38995 |
| This theorem is referenced by: lshpnelb 39002 lshpcmp 39006 islshpat 39035 lshpkrex 39136 dochshpncl 41403 |
| Copyright terms: Public domain | W3C validator |