Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpsm Structured version   Visualization version   GIF version

Theorem islshpsm 35001
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
islshpsm.v 𝑉 = (Base‘𝑊)
islshpsm.n 𝑁 = (LSpan‘𝑊)
islshpsm.s 𝑆 = (LSubSp‘𝑊)
islshpsm.p = (LSSum‘𝑊)
islshpsm.h 𝐻 = (LSHyp‘𝑊)
islshpsm.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpsm (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Distinct variable groups:   𝑣,𝑆   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝜑,𝑣
Allowed substitution hints:   (𝑣)   𝐻(𝑣)   𝑁(𝑣)

Proof of Theorem islshpsm
StepHypRef Expression
1 islshpsm.w . . 3 (𝜑𝑊 ∈ LMod)
2 islshpsm.v . . . 4 𝑉 = (Base‘𝑊)
3 islshpsm.n . . . 4 𝑁 = (LSpan‘𝑊)
4 islshpsm.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 islshpsm.h . . . 4 𝐻 = (LSHyp‘𝑊)
62, 3, 4, 5islshp 35000 . . 3 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
71, 6syl 17 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
81ad2antrr 718 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑊 ∈ LMod)
9 simplrl 796 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑆)
104, 3lspid 19303 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
118, 9, 10syl2anc 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁𝑈) = 𝑈)
1211uneq1d 3964 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑁𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣})))
1312fveq2d 6415 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
142, 4lssss 19255 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
159, 14syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑉)
16 snssi 4527 . . . . . . . . . 10 (𝑣𝑉 → {𝑣} ⊆ 𝑉)
1716adantl 474 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → {𝑣} ⊆ 𝑉)
182, 3lspun 19308 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
198, 15, 17, 18syl3anc 1491 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
202, 4, 3lspcl 19297 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
218, 17, 20syl2anc 580 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
22 islshpsm.p . . . . . . . . . 10 = (LSSum‘𝑊)
234, 3, 22lsmsp 19407 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
248, 9, 21, 23syl3anc 1491 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
2513, 19, 243eqtr4rd 2844 . . . . . . 7 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣})))
2625eqeq1d 2801 . . . . . 6 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2726rexbidva 3230 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝑉)) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2827pm5.32da 575 . . . 4 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
2928bicomd 215 . . 3 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
30 df-3an 1110 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
31 df-3an 1110 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
3229, 30, 313bitr4g 306 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
337, 32bitrd 271 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wrex 3090  cun 3767  wss 3769  {csn 4368  cfv 6101  (class class class)co 6878  Basecbs 16184  LSSumclsm 18362  LModclmod 19181  LSubSpclss 19250  LSpanclspn 19292  LSHypclsh 34996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-cntz 18062  df-lsm 18364  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lshyp 34998
This theorem is referenced by:  lshpnelb  35005  lshpcmp  35009  islshpat  35038  lshpkrex  35139  dochshpncl  37405
  Copyright terms: Public domain W3C validator