Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpsm Structured version   Visualization version   GIF version

Theorem islshpsm 38962
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
islshpsm.v 𝑉 = (Base‘𝑊)
islshpsm.n 𝑁 = (LSpan‘𝑊)
islshpsm.s 𝑆 = (LSubSp‘𝑊)
islshpsm.p = (LSSum‘𝑊)
islshpsm.h 𝐻 = (LSHyp‘𝑊)
islshpsm.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpsm (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Distinct variable groups:   𝑣,𝑆   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝜑,𝑣
Allowed substitution hints:   (𝑣)   𝐻(𝑣)   𝑁(𝑣)

Proof of Theorem islshpsm
StepHypRef Expression
1 islshpsm.w . . 3 (𝜑𝑊 ∈ LMod)
2 islshpsm.v . . . 4 𝑉 = (Base‘𝑊)
3 islshpsm.n . . . 4 𝑁 = (LSpan‘𝑊)
4 islshpsm.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 islshpsm.h . . . 4 𝐻 = (LSHyp‘𝑊)
62, 3, 4, 5islshp 38961 . . 3 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
71, 6syl 17 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
81ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑊 ∈ LMod)
9 simplrl 777 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑆)
104, 3lspid 20998 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁𝑈) = 𝑈)
1211uneq1d 4177 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑁𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣})))
1312fveq2d 6911 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
142, 4lssss 20952 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
159, 14syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑉)
16 snssi 4813 . . . . . . . . . 10 (𝑣𝑉 → {𝑣} ⊆ 𝑉)
1716adantl 481 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → {𝑣} ⊆ 𝑉)
182, 3lspun 21003 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
198, 15, 17, 18syl3anc 1370 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
202, 4, 3lspcl 20992 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
218, 17, 20syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
22 islshpsm.p . . . . . . . . . 10 = (LSSum‘𝑊)
234, 3, 22lsmsp 21103 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
248, 9, 21, 23syl3anc 1370 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
2513, 19, 243eqtr4rd 2786 . . . . . . 7 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣})))
2625eqeq1d 2737 . . . . . 6 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2726rexbidva 3175 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝑉)) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2827pm5.32da 579 . . . 4 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
2928bicomd 223 . . 3 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
30 df-3an 1088 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
31 df-3an 1088 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
3229, 30, 313bitr4g 314 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
337, 32bitrd 279 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  cun 3961  wss 3963  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  LSSumclsm 19667  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LSHypclsh 38957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lshyp 38959
This theorem is referenced by:  lshpnelb  38966  lshpcmp  38970  islshpat  38999  lshpkrex  39100  dochshpncl  41367
  Copyright terms: Public domain W3C validator