![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpsm | Structured version Visualization version GIF version |
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.) |
Ref | Expression |
---|---|
islshpsm.v | ⊢ 𝑉 = (Base‘𝑊) |
islshpsm.n | ⊢ 𝑁 = (LSpan‘𝑊) |
islshpsm.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
islshpsm.p | ⊢ ⊕ = (LSSum‘𝑊) |
islshpsm.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
islshpsm.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
islshpsm | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islshpsm.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | islshpsm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | islshpsm.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | islshpsm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
5 | islshpsm.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | 2, 3, 4, 5 | islshp 37441 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
8 | 1 | ad2antrr 724 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LMod) |
9 | simplrl 775 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝑆) | |
10 | 4, 3 | lspid 20443 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
11 | 8, 9, 10 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘𝑈) = 𝑈) |
12 | 11 | uneq1d 4122 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑁‘𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣}))) |
13 | 12 | fveq2d 6846 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
14 | 2, 4 | lssss 20397 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
15 | 9, 14 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ⊆ 𝑉) |
16 | snssi 4768 | . . . . . . . . . 10 ⊢ (𝑣 ∈ 𝑉 → {𝑣} ⊆ 𝑉) | |
17 | 16 | adantl 482 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → {𝑣} ⊆ 𝑉) |
18 | 2, 3 | lspun 20448 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
19 | 8, 15, 17, 18 | syl3anc 1371 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
20 | 2, 4, 3 | lspcl 20437 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
21 | 8, 17, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
22 | islshpsm.p | . . . . . . . . . 10 ⊢ ⊕ = (LSSum‘𝑊) | |
23 | 4, 3, 22 | lsmsp 20547 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
24 | 8, 9, 21, 23 | syl3anc 1371 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
25 | 13, 19, 24 | 3eqtr4rd 2787 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣}))) |
26 | 25 | eqeq1d 2738 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
27 | 26 | rexbidva 3173 | . . . . 5 ⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → (∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
28 | 27 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
29 | 28 | bicomd 222 | . . 3 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
30 | df-3an 1089 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) | |
31 | df-3an 1089 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉)) | |
32 | 29, 30, 31 | 3bitr4g 313 | . 2 ⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
33 | 7, 32 | bitrd 278 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3073 ∪ cun 3908 ⊆ wss 3910 {csn 4586 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 LSSumclsm 19416 LModclmod 20322 LSubSpclss 20392 LSpanclspn 20432 LSHypclsh 37437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-cntz 19097 df-lsm 19418 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lshyp 37439 |
This theorem is referenced by: lshpnelb 37446 lshpcmp 37450 islshpat 37479 lshpkrex 37580 dochshpncl 39847 |
Copyright terms: Public domain | W3C validator |