Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islshpsm Structured version   Visualization version   GIF version

Theorem islshpsm 36118
Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.)
Hypotheses
Ref Expression
islshpsm.v 𝑉 = (Base‘𝑊)
islshpsm.n 𝑁 = (LSpan‘𝑊)
islshpsm.s 𝑆 = (LSubSp‘𝑊)
islshpsm.p = (LSSum‘𝑊)
islshpsm.h 𝐻 = (LSHyp‘𝑊)
islshpsm.w (𝜑𝑊 ∈ LMod)
Assertion
Ref Expression
islshpsm (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Distinct variable groups:   𝑣,𝑆   𝑣,𝑈   𝑣,𝑉   𝑣,𝑊   𝜑,𝑣
Allowed substitution hints:   (𝑣)   𝐻(𝑣)   𝑁(𝑣)

Proof of Theorem islshpsm
StepHypRef Expression
1 islshpsm.w . . 3 (𝜑𝑊 ∈ LMod)
2 islshpsm.v . . . 4 𝑉 = (Base‘𝑊)
3 islshpsm.n . . . 4 𝑁 = (LSpan‘𝑊)
4 islshpsm.s . . . 4 𝑆 = (LSubSp‘𝑊)
5 islshpsm.h . . . 4 𝐻 = (LSHyp‘𝑊)
62, 3, 4, 5islshp 36117 . . 3 (𝑊 ∈ LMod → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
71, 6syl 17 . 2 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
81ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑊 ∈ LMod)
9 simplrl 775 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑆)
104, 3lspid 19756 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑁𝑈) = 𝑈)
118, 9, 10syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁𝑈) = 𝑈)
1211uneq1d 4140 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑁𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣})))
1312fveq2d 6676 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
142, 4lssss 19710 . . . . . . . . . 10 (𝑈𝑆𝑈𝑉)
159, 14syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → 𝑈𝑉)
16 snssi 4743 . . . . . . . . . 10 (𝑣𝑉 → {𝑣} ⊆ 𝑉)
1716adantl 484 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → {𝑣} ⊆ 𝑉)
182, 3lspun 19761 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
198, 15, 17, 18syl3anc 1367 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁𝑈) ∪ (𝑁‘{𝑣}))))
202, 4, 3lspcl 19750 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
218, 17, 20syl2anc 586 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑁‘{𝑣}) ∈ 𝑆)
22 islshpsm.p . . . . . . . . . 10 = (LSSum‘𝑊)
234, 3, 22lsmsp 19860 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑈𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
248, 9, 21, 23syl3anc 1367 . . . . . . . 8 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣}))))
2513, 19, 243eqtr4rd 2869 . . . . . . 7 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → (𝑈 (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣})))
2625eqeq1d 2825 . . . . . 6 (((𝜑 ∧ (𝑈𝑆𝑈𝑉)) ∧ 𝑣𝑉) → ((𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2726rexbidva 3298 . . . . 5 ((𝜑 ∧ (𝑈𝑆𝑈𝑉)) → (∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
2827pm5.32da 581 . . . 4 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
2928bicomd 225 . . 3 (𝜑 → (((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
30 df-3an 1085 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))
31 df-3an 1085 . . 3 ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈𝑆𝑈𝑉) ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉))
3229, 30, 313bitr4g 316 . 2 (𝜑 → ((𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
337, 32bitrd 281 1 (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wrex 3141  cun 3936  wss 3938  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  LSSumclsm 18761  LModclmod 19636  LSubSpclss 19705  LSpanclspn 19745  LSHypclsh 36113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-subg 18278  df-cntz 18449  df-lsm 18763  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lshyp 36115
This theorem is referenced by:  lshpnelb  36122  lshpcmp  36126  islshpat  36155  lshpkrex  36256  dochshpncl  38522
  Copyright terms: Public domain W3C validator