| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islshpsm | Structured version Visualization version GIF version | ||
| Description: Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.) |
| Ref | Expression |
|---|---|
| islshpsm.v | ⊢ 𝑉 = (Base‘𝑊) |
| islshpsm.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| islshpsm.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| islshpsm.p | ⊢ ⊕ = (LSSum‘𝑊) |
| islshpsm.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
| islshpsm.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| Ref | Expression |
|---|---|
| islshpsm | ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islshpsm.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | islshpsm.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | islshpsm.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 4 | islshpsm.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 5 | islshpsm.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 6 | 2, 3, 4, 5 | islshp 39026 | . . 3 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 8 | 1 | ad2antrr 726 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 9 | simplrl 776 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ∈ 𝑆) | |
| 10 | 4, 3 | lspid 20915 | . . . . . . . . . . 11 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑁‘𝑈) = 𝑈) |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘𝑈) = 𝑈) |
| 12 | 11 | uneq1d 4114 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑁‘𝑈) ∪ (𝑁‘{𝑣})) = (𝑈 ∪ (𝑁‘{𝑣}))) |
| 13 | 12 | fveq2d 6826 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣}))) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
| 14 | 2, 4 | lssss 20869 | . . . . . . . . . 10 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 15 | 9, 14 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → 𝑈 ⊆ 𝑉) |
| 16 | snssi 4757 | . . . . . . . . . 10 ⊢ (𝑣 ∈ 𝑉 → {𝑣} ⊆ 𝑉) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → {𝑣} ⊆ 𝑉) |
| 18 | 2, 3 | lspun 20920 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ⊆ 𝑉 ∧ {𝑣} ⊆ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
| 19 | 8, 15, 17, 18 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘(𝑈 ∪ {𝑣})) = (𝑁‘((𝑁‘𝑈) ∪ (𝑁‘{𝑣})))) |
| 20 | 2, 4, 3 | lspcl 20909 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ LMod ∧ {𝑣} ⊆ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
| 21 | 8, 17, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ 𝑆) |
| 22 | islshpsm.p | . . . . . . . . . 10 ⊢ ⊕ = (LSSum‘𝑊) | |
| 23 | 4, 3, 22 | lsmsp 21020 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ (𝑁‘{𝑣}) ∈ 𝑆) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
| 24 | 8, 9, 21, 23 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ (𝑁‘{𝑣})))) |
| 25 | 13, 19, 24 | 3eqtr4rd 2777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑣})) = (𝑁‘(𝑈 ∪ {𝑣}))) |
| 26 | 25 | eqeq1d 2733 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) ∧ 𝑣 ∈ 𝑉) → ((𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 27 | 26 | rexbidva 3154 | . . . . 5 ⊢ ((𝜑 ∧ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉)) → (∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉 ↔ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) |
| 28 | 27 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉))) |
| 29 | 28 | bicomd 223 | . . 3 ⊢ (𝜑 → (((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| 30 | df-3an 1088 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)) | |
| 31 | df-3an 1088 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉) ↔ ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉) ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉)) | |
| 32 | 29, 30, 31 | 3bitr4g 314 | . 2 ⊢ (𝜑 → ((𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉) ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| 33 | 7, 32 | bitrd 279 | 1 ⊢ (𝜑 → (𝑈 ∈ 𝐻 ↔ (𝑈 ∈ 𝑆 ∧ 𝑈 ≠ 𝑉 ∧ ∃𝑣 ∈ 𝑉 (𝑈 ⊕ (𝑁‘{𝑣})) = 𝑉))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∪ cun 3895 ⊆ wss 3897 {csn 4573 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 LSSumclsm 19546 LModclmod 20793 LSubSpclss 20864 LSpanclspn 20904 LSHypclsh 39022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-ur 20100 df-ring 20153 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lshyp 39024 |
| This theorem is referenced by: lshpnelb 39031 lshpcmp 39035 islshpat 39064 lshpkrex 39165 dochshpncl 41431 |
| Copyright terms: Public domain | W3C validator |