Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lvecpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
lvecpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
lvecpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
lvecpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
lvecpropd.4 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) |
lvecpropd.5 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) |
lvecpropd.6 | ⊢ 𝑃 = (Base‘𝐹) |
lvecpropd.7 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
Ref | Expression |
---|---|
lvecpropd | ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
2 | lvecpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
3 | lvecpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
4 | lvecpropd.4 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) | |
5 | lvecpropd.5 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) | |
6 | lvecpropd.6 | . . . 4 ⊢ 𝑃 = (Base‘𝐹) | |
7 | lvecpropd.7 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | lmodpropd 20258 | . . 3 ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
9 | 4, 5 | eqtr3d 2779 | . . . 4 ⊢ (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿)) |
10 | 9 | eleq1d 2822 | . . 3 ⊢ (𝜑 → ((Scalar‘𝐾) ∈ DivRing ↔ (Scalar‘𝐿) ∈ DivRing)) |
11 | 8, 10 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝐾 ∈ LMod ∧ (Scalar‘𝐾) ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ (Scalar‘𝐿) ∈ DivRing))) |
12 | eqid 2737 | . . 3 ⊢ (Scalar‘𝐾) = (Scalar‘𝐾) | |
13 | 12 | islvec 20438 | . 2 ⊢ (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ (Scalar‘𝐾) ∈ DivRing)) |
14 | eqid 2737 | . . 3 ⊢ (Scalar‘𝐿) = (Scalar‘𝐿) | |
15 | 14 | islvec 20438 | . 2 ⊢ (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ (Scalar‘𝐿) ∈ DivRing)) |
16 | 11, 13, 15 | 3bitr4g 313 | 1 ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 +gcplusg 17032 Scalarcsca 17035 ·𝑠 cvsca 17036 DivRingcdr 20063 LModclmod 20195 LVecclvec 20436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-plusg 17045 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-mgp 19789 df-ur 19806 df-ring 19853 df-lmod 20197 df-lvec 20437 |
This theorem is referenced by: phlpropd 20932 tnglvec 31801 |
Copyright terms: Public domain | W3C validator |