| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| Ref | Expression |
|---|---|
| lvecpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| lvecpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| lvecpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lvecpropd.4 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) |
| lvecpropd.5 | ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) |
| lvecpropd.6 | ⊢ 𝑃 = (Base‘𝐹) |
| lvecpropd.7 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| lvecpropd | ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | lvecpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | lvecpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 4 | lvecpropd.4 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) | |
| 5 | lvecpropd.5 | . . . 4 ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) | |
| 6 | lvecpropd.6 | . . . 4 ⊢ 𝑃 = (Base‘𝐹) | |
| 7 | lvecpropd.7 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | lmodpropd 20868 | . . 3 ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| 9 | 4, 5 | eqtr3d 2770 | . . . 4 ⊢ (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿)) |
| 10 | 9 | eleq1d 2818 | . . 3 ⊢ (𝜑 → ((Scalar‘𝐾) ∈ DivRing ↔ (Scalar‘𝐿) ∈ DivRing)) |
| 11 | 8, 10 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐾 ∈ LMod ∧ (Scalar‘𝐾) ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ (Scalar‘𝐿) ∈ DivRing))) |
| 12 | eqid 2733 | . . 3 ⊢ (Scalar‘𝐾) = (Scalar‘𝐾) | |
| 13 | 12 | islvec 21048 | . 2 ⊢ (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ (Scalar‘𝐾) ∈ DivRing)) |
| 14 | eqid 2733 | . . 3 ⊢ (Scalar‘𝐿) = (Scalar‘𝐿) | |
| 15 | 14 | islvec 21048 | . 2 ⊢ (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ (Scalar‘𝐿) ∈ DivRing)) |
| 16 | 11, 13, 15 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 Scalarcsca 17174 ·𝑠 cvsca 17175 DivRingcdr 20654 LModclmod 20803 LVecclvec 21046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-mgp 20069 df-ur 20110 df-ring 20163 df-lmod 20805 df-lvec 21047 |
| This theorem is referenced by: phlpropd 21602 tnglvec 33636 |
| Copyright terms: Public domain | W3C validator |