![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
Ref | Expression |
---|---|
lvecpropd.1 | β’ (π β π΅ = (BaseβπΎ)) |
lvecpropd.2 | β’ (π β π΅ = (BaseβπΏ)) |
lvecpropd.3 | β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) |
lvecpropd.4 | β’ (π β πΉ = (ScalarβπΎ)) |
lvecpropd.5 | β’ (π β πΉ = (ScalarβπΏ)) |
lvecpropd.6 | β’ π = (BaseβπΉ) |
lvecpropd.7 | β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) |
Ref | Expression |
---|---|
lvecpropd | β’ (π β (πΎ β LVec β πΏ β LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lvecpropd.1 | . . . 4 β’ (π β π΅ = (BaseβπΎ)) | |
2 | lvecpropd.2 | . . . 4 β’ (π β π΅ = (BaseβπΏ)) | |
3 | lvecpropd.3 | . . . 4 β’ ((π β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯(+gβπΎ)π¦) = (π₯(+gβπΏ)π¦)) | |
4 | lvecpropd.4 | . . . 4 β’ (π β πΉ = (ScalarβπΎ)) | |
5 | lvecpropd.5 | . . . 4 β’ (π β πΉ = (ScalarβπΏ)) | |
6 | lvecpropd.6 | . . . 4 β’ π = (BaseβπΉ) | |
7 | lvecpropd.7 | . . . 4 β’ ((π β§ (π₯ β π β§ π¦ β π΅)) β (π₯( Β·π βπΎ)π¦) = (π₯( Β·π βπΏ)π¦)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | lmodpropd 20812 | . . 3 β’ (π β (πΎ β LMod β πΏ β LMod)) |
9 | 4, 5 | eqtr3d 2767 | . . . 4 β’ (π β (ScalarβπΎ) = (ScalarβπΏ)) |
10 | 9 | eleq1d 2810 | . . 3 β’ (π β ((ScalarβπΎ) β DivRing β (ScalarβπΏ) β DivRing)) |
11 | 8, 10 | anbi12d 630 | . 2 β’ (π β ((πΎ β LMod β§ (ScalarβπΎ) β DivRing) β (πΏ β LMod β§ (ScalarβπΏ) β DivRing))) |
12 | eqid 2725 | . . 3 β’ (ScalarβπΎ) = (ScalarβπΎ) | |
13 | 12 | islvec 20993 | . 2 β’ (πΎ β LVec β (πΎ β LMod β§ (ScalarβπΎ) β DivRing)) |
14 | eqid 2725 | . . 3 β’ (ScalarβπΏ) = (ScalarβπΏ) | |
15 | 14 | islvec 20993 | . 2 β’ (πΏ β LVec β (πΏ β LMod β§ (ScalarβπΏ) β DivRing)) |
16 | 11, 13, 15 | 3bitr4g 313 | 1 β’ (π β (πΎ β LVec β πΏ β LVec)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 βcfv 6543 (class class class)co 7416 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 Β·π cvsca 17236 DivRingcdr 20628 LModclmod 20747 LVecclvec 20991 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-0g 17422 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-mgp 20079 df-ur 20126 df-ring 20179 df-lmod 20749 df-lvec 20992 |
This theorem is referenced by: phlpropd 21591 tnglvec 33367 |
Copyright terms: Public domain | W3C validator |