| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlmlvec | Structured version Visualization version GIF version | ||
| Description: The ring module over a division ring is a vector space. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| rlmlvec | ⊢ (𝑅 ∈ DivRing → (ringLMod‘𝑅) ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20651 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | rlmlmod 21116 | . . 3 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → (ringLMod‘𝑅) ∈ LMod) |
| 4 | rlmsca 21111 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 5 | id 22 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ DivRing) | |
| 6 | 4, 5 | eqeltrrd 2830 | . 2 ⊢ (𝑅 ∈ DivRing → (Scalar‘(ringLMod‘𝑅)) ∈ DivRing) |
| 7 | eqid 2730 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
| 8 | 7 | islvec 21017 | . 2 ⊢ ((ringLMod‘𝑅) ∈ LVec ↔ ((ringLMod‘𝑅) ∈ LMod ∧ (Scalar‘(ringLMod‘𝑅)) ∈ DivRing)) |
| 9 | 3, 6, 8 | sylanbrc 583 | 1 ⊢ (𝑅 ∈ DivRing → (ringLMod‘𝑅) ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6513 Scalarcsca 17229 Ringcrg 20148 DivRingcdr 20644 LModclmod 20772 LVecclvec 21015 ringLModcrglmod 21085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-subg 19061 df-mgp 20056 df-ur 20097 df-ring 20150 df-subrg 20485 df-drng 20646 df-lmod 20774 df-lvec 21016 df-sra 21086 df-rgmod 21087 |
| This theorem is referenced by: rlmnvc 24597 cnrlvec 25050 recvs 25052 qcvs 25053 rlmdim 33611 |
| Copyright terms: Public domain | W3C validator |