| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version | ||
| Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | islvec 21048 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6489 Scalarcsca 17174 DivRingcdr 20654 LModclmod 20803 LVecclvec 21046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-lvec 21047 |
| This theorem is referenced by: lsslvec 21053 lvecvs0or 21055 lssvs0or 21057 lvecinv 21060 lspsnvs 21061 lspsneq 21069 lspfixed 21075 lspexch 21076 lspsolv 21090 islbs2 21101 islbs3 21102 obsne0 21672 islinds4 21782 nvctvc 24625 lssnvc 24627 cvsunit 25068 cvsdivcl 25070 cphsubrg 25117 cphreccl 25118 cphqss 25125 phclm 25169 ipcau2 25171 tcphcph 25174 hlprlem 25304 ishl2 25307 quslvec 33336 0nellinds 33346 lmhmlvec2 33643 dimlssid 33656 lfl1 39179 lkrsc 39206 eqlkr3 39210 lkrlsp 39211 lkrshp 39214 lduallvec 39263 dochkr1 41587 dochkr1OLDN 41588 lcfl7lem 41608 lclkrlem2m 41628 lclkrlem2o 41630 lclkrlem2p 41631 lcfrlem1 41651 lcfrlem2 41652 lcfrlem3 41653 lcfrlem29 41680 lcfrlem31 41682 lcfrlem33 41684 mapdpglem17N 41797 mapdpglem18 41798 mapdpglem19 41799 mapdpglem21 41801 mapdpglem22 41802 hdmapip1 42025 hgmapvvlem1 42032 hgmapvvlem2 42033 hgmapvvlem3 42034 prjspersym 42715 lincreslvec3 48597 isldepslvec2 48600 |
| Copyright terms: Public domain | W3C validator |