| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version | ||
| Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | islvec 21026 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Scalarcsca 17182 DivRingcdr 20632 LModclmod 20781 LVecclvec 21024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-lvec 21025 |
| This theorem is referenced by: lsslvec 21031 lvecvs0or 21033 lssvs0or 21035 lvecinv 21038 lspsnvs 21039 lspsneq 21047 lspfixed 21053 lspexch 21054 lspsolv 21068 islbs2 21079 islbs3 21080 obsne0 21650 islinds4 21760 nvctvc 24604 lssnvc 24606 cvsunit 25047 cvsdivcl 25049 cphsubrg 25096 cphreccl 25097 cphqss 25104 phclm 25148 ipcau2 25150 tcphcph 25153 hlprlem 25283 ishl2 25286 quslvec 33307 0nellinds 33317 lmhmlvec2 33591 dimlssid 33604 lfl1 39048 lkrsc 39075 eqlkr3 39079 lkrlsp 39080 lkrshp 39083 lduallvec 39132 dochkr1 41457 dochkr1OLDN 41458 lcfl7lem 41478 lclkrlem2m 41498 lclkrlem2o 41500 lclkrlem2p 41501 lcfrlem1 41521 lcfrlem2 41522 lcfrlem3 41523 lcfrlem29 41550 lcfrlem31 41552 lcfrlem33 41554 mapdpglem17N 41667 mapdpglem18 41668 mapdpglem19 41669 mapdpglem21 41671 mapdpglem22 41672 hdmapip1 41895 hgmapvvlem1 41902 hgmapvvlem2 41903 hgmapvvlem3 41904 prjspersym 42580 lincreslvec3 48455 isldepslvec2 48458 |
| Copyright terms: Public domain | W3C validator |