Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version |
Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | islvec 20281 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Scalarcsca 16891 DivRingcdr 19906 LModclmod 20038 LVecclvec 20279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-lvec 20280 |
This theorem is referenced by: lsslvec 20284 lvecvs0or 20285 lssvs0or 20287 lvecinv 20290 lspsnvs 20291 lspsneq 20299 lspfixed 20305 lspexch 20306 lspsolv 20320 islbs2 20331 islbs3 20332 obsne0 20842 islinds4 20952 nvctvc 23770 lssnvc 23772 cvsunit 24200 cvsdivcl 24202 cphsubrg 24249 cphreccl 24250 cphqss 24257 phclm 24301 ipcau2 24303 tcphcph 24306 hlprlem 24436 ishl2 24439 0nellinds 31468 lmhmlvec2 31604 lfl1 37011 lkrsc 37038 eqlkr3 37042 lkrlsp 37043 lkrshp 37046 lduallvec 37095 dochkr1 39419 dochkr1OLDN 39420 lcfl7lem 39440 lclkrlem2m 39460 lclkrlem2o 39462 lclkrlem2p 39463 lcfrlem1 39483 lcfrlem2 39484 lcfrlem3 39485 lcfrlem29 39512 lcfrlem31 39514 lcfrlem33 39516 mapdpglem17N 39629 mapdpglem18 39630 mapdpglem19 39631 mapdpglem21 39633 mapdpglem22 39634 hdmapip1 39857 hgmapvvlem1 39864 hgmapvvlem2 39865 hgmapvvlem3 39866 prjspersym 40367 lincreslvec3 45711 isldepslvec2 45714 |
Copyright terms: Public domain | W3C validator |