![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version |
Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | islvec 19464 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
3 | 2 | simprbi 492 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ‘cfv 6124 Scalarcsca 16309 DivRingcdr 19104 LModclmod 19220 LVecclvec 19462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-rex 3124 df-rab 3127 df-v 3417 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-iota 6087 df-fv 6132 df-lvec 19463 |
This theorem is referenced by: lsslvec 19467 lvecvs0or 19468 lssvs0or 19470 lvecinv 19473 lspsnvs 19474 lspsneq 19482 lspfixed 19488 lspfixedOLD 19489 lspexch 19490 lspsolv 19504 islbs2 19516 islbs3 19517 obsne0 20433 islinds4 20542 nvctvc 22875 lssnvc 22877 cvsunit 23301 cvsdivcl 23303 cphsubrg 23350 cphreccl 23351 cphqss 23358 phclm 23401 ipcau2 23403 tcphcph 23406 hlprlem 23536 ishl2 23539 lfl1 35146 lkrsc 35173 eqlkr3 35177 lkrlsp 35178 lkrshp 35181 lduallvec 35230 dochkr1 37554 dochkr1OLDN 37555 lcfl7lem 37575 lclkrlem2m 37595 lclkrlem2o 37597 lclkrlem2p 37598 lcfrlem1 37618 lcfrlem2 37619 lcfrlem3 37620 lcfrlem29 37647 lcfrlem31 37649 lcfrlem33 37651 mapdpglem17N 37764 mapdpglem18 37765 mapdpglem19 37766 mapdpglem21 37768 mapdpglem22 37769 hdmapip1 37992 hgmapvvlem1 37999 hgmapvvlem2 38000 hgmapvvlem3 38001 lincreslvec3 43119 isldepslvec2 43122 |
Copyright terms: Public domain | W3C validator |