| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version | ||
| Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | islvec 21067 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 Scalarcsca 17279 DivRingcdr 20694 LModclmod 20822 LVecclvec 21065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-lvec 21066 |
| This theorem is referenced by: lsslvec 21072 lvecvs0or 21074 lssvs0or 21076 lvecinv 21079 lspsnvs 21080 lspsneq 21088 lspfixed 21094 lspexch 21095 lspsolv 21109 islbs2 21120 islbs3 21121 obsne0 21690 islinds4 21800 nvctvc 24644 lssnvc 24646 cvsunit 25087 cvsdivcl 25089 cphsubrg 25137 cphreccl 25138 cphqss 25145 phclm 25189 ipcau2 25191 tcphcph 25194 hlprlem 25324 ishl2 25327 quslvec 33380 0nellinds 33390 lmhmlvec2 33664 dimlssid 33677 lfl1 39093 lkrsc 39120 eqlkr3 39124 lkrlsp 39125 lkrshp 39128 lduallvec 39177 dochkr1 41502 dochkr1OLDN 41503 lcfl7lem 41523 lclkrlem2m 41543 lclkrlem2o 41545 lclkrlem2p 41546 lcfrlem1 41566 lcfrlem2 41567 lcfrlem3 41568 lcfrlem29 41595 lcfrlem31 41597 lcfrlem33 41599 mapdpglem17N 41712 mapdpglem18 41713 mapdpglem19 41714 mapdpglem21 41716 mapdpglem22 41717 hdmapip1 41940 hgmapvvlem1 41947 hgmapvvlem2 41948 hgmapvvlem3 41949 prjspersym 42597 lincreslvec3 48425 isldepslvec2 48428 |
| Copyright terms: Public domain | W3C validator |