| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version | ||
| Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | islvec 21018 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Scalarcsca 17230 DivRingcdr 20645 LModclmod 20773 LVecclvec 21016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-lvec 21017 |
| This theorem is referenced by: lsslvec 21023 lvecvs0or 21025 lssvs0or 21027 lvecinv 21030 lspsnvs 21031 lspsneq 21039 lspfixed 21045 lspexch 21046 lspsolv 21060 islbs2 21071 islbs3 21072 obsne0 21641 islinds4 21751 nvctvc 24595 lssnvc 24597 cvsunit 25038 cvsdivcl 25040 cphsubrg 25087 cphreccl 25088 cphqss 25095 phclm 25139 ipcau2 25141 tcphcph 25144 hlprlem 25274 ishl2 25277 quslvec 33338 0nellinds 33348 lmhmlvec2 33622 dimlssid 33635 lfl1 39070 lkrsc 39097 eqlkr3 39101 lkrlsp 39102 lkrshp 39105 lduallvec 39154 dochkr1 41479 dochkr1OLDN 41480 lcfl7lem 41500 lclkrlem2m 41520 lclkrlem2o 41522 lclkrlem2p 41523 lcfrlem1 41543 lcfrlem2 41544 lcfrlem3 41545 lcfrlem29 41572 lcfrlem31 41574 lcfrlem33 41576 mapdpglem17N 41689 mapdpglem18 41690 mapdpglem19 41691 mapdpglem21 41693 mapdpglem22 41694 hdmapip1 41917 hgmapvvlem1 41924 hgmapvvlem2 41925 hgmapvvlem3 41926 prjspersym 42602 lincreslvec3 48475 isldepslvec2 48478 |
| Copyright terms: Public domain | W3C validator |