| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version | ||
| Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | islvec 21031 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 Scalarcsca 17156 DivRingcdr 20637 LModclmod 20786 LVecclvec 21029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-iota 6433 df-fv 6485 df-lvec 21030 |
| This theorem is referenced by: lsslvec 21036 lvecvs0or 21038 lssvs0or 21040 lvecinv 21043 lspsnvs 21044 lspsneq 21052 lspfixed 21058 lspexch 21059 lspsolv 21073 islbs2 21084 islbs3 21085 obsne0 21655 islinds4 21765 nvctvc 24608 lssnvc 24610 cvsunit 25051 cvsdivcl 25053 cphsubrg 25100 cphreccl 25101 cphqss 25108 phclm 25152 ipcau2 25154 tcphcph 25157 hlprlem 25287 ishl2 25290 quslvec 33315 0nellinds 33325 lmhmlvec2 33622 dimlssid 33635 lfl1 39088 lkrsc 39115 eqlkr3 39119 lkrlsp 39120 lkrshp 39123 lduallvec 39172 dochkr1 41496 dochkr1OLDN 41497 lcfl7lem 41517 lclkrlem2m 41537 lclkrlem2o 41539 lclkrlem2p 41540 lcfrlem1 41560 lcfrlem2 41561 lcfrlem3 41562 lcfrlem29 41589 lcfrlem31 41591 lcfrlem33 41593 mapdpglem17N 41706 mapdpglem18 41707 mapdpglem19 41708 mapdpglem21 41710 mapdpglem22 41711 hdmapip1 41934 hgmapvvlem1 41941 hgmapvvlem2 41942 hgmapvvlem3 41943 prjspersym 42619 lincreslvec3 48493 isldepslvec2 48496 |
| Copyright terms: Public domain | W3C validator |