![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version |
Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | islvec 21120 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 Scalarcsca 17300 DivRingcdr 20745 LModclmod 20874 LVecclvec 21118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-lvec 21119 |
This theorem is referenced by: lsslvec 21125 lvecvs0or 21127 lssvs0or 21129 lvecinv 21132 lspsnvs 21133 lspsneq 21141 lspfixed 21147 lspexch 21148 lspsolv 21162 islbs2 21173 islbs3 21174 obsne0 21762 islinds4 21872 nvctvc 24736 lssnvc 24738 cvsunit 25177 cvsdivcl 25179 cphsubrg 25227 cphreccl 25228 cphqss 25235 phclm 25279 ipcau2 25281 tcphcph 25284 hlprlem 25414 ishl2 25417 quslvec 33367 0nellinds 33377 lmhmlvec2 33646 dimlssid 33659 lfl1 39051 lkrsc 39078 eqlkr3 39082 lkrlsp 39083 lkrshp 39086 lduallvec 39135 dochkr1 41460 dochkr1OLDN 41461 lcfl7lem 41481 lclkrlem2m 41501 lclkrlem2o 41503 lclkrlem2p 41504 lcfrlem1 41524 lcfrlem2 41525 lcfrlem3 41526 lcfrlem29 41553 lcfrlem31 41555 lcfrlem33 41557 mapdpglem17N 41670 mapdpglem18 41671 mapdpglem19 41672 mapdpglem21 41674 mapdpglem22 41675 hdmapip1 41898 hgmapvvlem1 41905 hgmapvvlem2 41906 hgmapvvlem3 41907 prjspersym 42593 lincreslvec3 48327 isldepslvec2 48330 |
Copyright terms: Public domain | W3C validator |