![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version |
Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
Ref | Expression |
---|---|
islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | islvec 21126 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Scalarcsca 17314 DivRingcdr 20751 LModclmod 20880 LVecclvec 21124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-lvec 21125 |
This theorem is referenced by: lsslvec 21131 lvecvs0or 21133 lssvs0or 21135 lvecinv 21138 lspsnvs 21139 lspsneq 21147 lspfixed 21153 lspexch 21154 lspsolv 21168 islbs2 21179 islbs3 21180 obsne0 21768 islinds4 21878 nvctvc 24742 lssnvc 24744 cvsunit 25183 cvsdivcl 25185 cphsubrg 25233 cphreccl 25234 cphqss 25241 phclm 25285 ipcau2 25287 tcphcph 25290 hlprlem 25420 ishl2 25423 quslvec 33353 0nellinds 33363 lmhmlvec2 33632 dimlssid 33645 lfl1 39026 lkrsc 39053 eqlkr3 39057 lkrlsp 39058 lkrshp 39061 lduallvec 39110 dochkr1 41435 dochkr1OLDN 41436 lcfl7lem 41456 lclkrlem2m 41476 lclkrlem2o 41478 lclkrlem2p 41479 lcfrlem1 41499 lcfrlem2 41500 lcfrlem3 41501 lcfrlem29 41528 lcfrlem31 41530 lcfrlem33 41532 mapdpglem17N 41645 mapdpglem18 41646 mapdpglem19 41647 mapdpglem21 41649 mapdpglem22 41650 hdmapip1 41873 hgmapvvlem1 41880 hgmapvvlem2 41881 hgmapvvlem3 41882 prjspersym 42562 lincreslvec3 48211 isldepslvec2 48214 |
Copyright terms: Public domain | W3C validator |