| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecdrng | Structured version Visualization version GIF version | ||
| Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
| Ref | Expression |
|---|---|
| islvec.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| lvecdrng | ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islvec.1 | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | 1 | islvec 21011 | . 2 ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 3 | 2 | simprbi 496 | 1 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Scalarcsca 17223 DivRingcdr 20638 LModclmod 20766 LVecclvec 21009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-lvec 21010 |
| This theorem is referenced by: lsslvec 21016 lvecvs0or 21018 lssvs0or 21020 lvecinv 21023 lspsnvs 21024 lspsneq 21032 lspfixed 21038 lspexch 21039 lspsolv 21053 islbs2 21064 islbs3 21065 obsne0 21634 islinds4 21744 nvctvc 24588 lssnvc 24590 cvsunit 25031 cvsdivcl 25033 cphsubrg 25080 cphreccl 25081 cphqss 25088 phclm 25132 ipcau2 25134 tcphcph 25137 hlprlem 25267 ishl2 25270 quslvec 33331 0nellinds 33341 lmhmlvec2 33615 dimlssid 33628 lfl1 39063 lkrsc 39090 eqlkr3 39094 lkrlsp 39095 lkrshp 39098 lduallvec 39147 dochkr1 41472 dochkr1OLDN 41473 lcfl7lem 41493 lclkrlem2m 41513 lclkrlem2o 41515 lclkrlem2p 41516 lcfrlem1 41536 lcfrlem2 41537 lcfrlem3 41538 lcfrlem29 41565 lcfrlem31 41567 lcfrlem33 41569 mapdpglem17N 41682 mapdpglem18 41683 mapdpglem19 41684 mapdpglem21 41686 mapdpglem22 41687 hdmapip1 41910 hgmapvvlem1 41917 hgmapvvlem2 41918 hgmapvvlem3 41919 prjspersym 42595 lincreslvec3 48471 isldepslvec2 48474 |
| Copyright terms: Public domain | W3C validator |