Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matdim Structured version   Visualization version   GIF version

Theorem matdim 32312
Description: Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
matdim.a 𝐴 = (𝐼 Mat 𝑅)
matdim.n 𝑁 = (♯‘𝐼)
Assertion
Ref Expression
matdim ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))

Proof of Theorem matdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
2 simpl 483 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐼 ∈ Fin)
3 xpfi 9261 . . . . 5 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
42, 2, 3syl2anc 584 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝐼 × 𝐼) ∈ Fin)
5 eqid 2736 . . . . 5 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
65frlmdim 32308 . . . 4 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
71, 4, 6syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
8 matdim.a . . . . . 6 𝐴 = (𝐼 Mat 𝑅)
98, 5matbas 21760 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘𝐴))
109eqcomd 2742 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
11 eqidd 2737 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘𝐴))
12 ssidd 3967 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) ⊆ (Base‘𝐴))
138, 5matplusg 21761 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(𝑅 freeLMod (𝐼 × 𝐼))) = (+g𝐴))
1413oveqdr 7385 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(+g‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥(+g𝐴)𝑦))
155frlmlvec 21167 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
161, 4, 15syl2anc 584 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
17 lveclmod 20567 . . . . . . . 8 ((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1816, 17syl 17 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1918adantr 481 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
20 simprl 769 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
218, 5matsca 21762 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘𝐴))
2221fveq2d 6846 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘𝐴)))
2322eqcomd 2742 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2423adantr 481 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2520, 24eleqtrd 2840 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
26 simprr 771 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
2710adantr 481 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2826, 27eleqtrd 2840 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
29 eqid 2736 . . . . . . 7 (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))
30 eqid 2736 . . . . . . 7 (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))
31 eqid 2736 . . . . . . 7 ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))
32 eqid 2736 . . . . . . 7 (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))
3329, 30, 31, 32lmodvscl 20339 . . . . . 6 (((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3419, 25, 28, 33syl3anc 1371 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3534, 27eleqtrrd 2841 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘𝐴))
368, 5matvsca 21764 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠𝐴))
3736oveqdr 7385 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥( ·𝑠𝐴)𝑦))
38 eqid 2736 . . . 4 (Scalar‘𝐴) = (Scalar‘𝐴)
39 eqidd 2737 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)))
4021fveq2d 6846 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (+g‘(Scalar‘𝐴)))
4140oveqdr 7385 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐴)))) → (𝑥(+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))𝑦) = (𝑥(+g‘(Scalar‘𝐴))𝑦))
42 drngring 20192 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
438matlmod 21778 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
4442, 43sylan2 593 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LMod)
458matsca2 21769 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 = (Scalar‘𝐴))
4645, 1eqeltrrd 2839 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘𝐴) ∈ DivRing)
4738islvec 20565 . . . . 5 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing))
4844, 46, 47sylanbrc 583 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LVec)
4910, 11, 12, 14, 35, 37, 30, 38, 23, 39, 41, 16, 48dimpropd 32306 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (dim‘𝐴))
50 hashxp 14334 . . . 4 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
512, 2, 50syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
527, 49, 513eqtr3d 2784 . 2 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = ((♯‘𝐼) · (♯‘𝐼)))
53 matdim.n . . 3 𝑁 = (♯‘𝐼)
5453, 53oveq12i 7369 . 2 (𝑁 · 𝑁) = ((♯‘𝐼) · (♯‘𝐼))
5552, 54eqtr4di 2794 1 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   × cxp 5631  cfv 6496  (class class class)co 7357  Fincfn 8883   · cmul 11056  chash 14230  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  Ringcrg 19964  DivRingcdr 20185  LModclmod 20322  LVecclvec 20563   freeLMod cfrlm 21152   Mat cmat 21754  dimcldim 32298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-rpss 7660  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-r1 9700  df-rank 9701  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ocomp 17154  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-mri 17468  df-acs 17469  df-proset 18184  df-drs 18185  df-poset 18202  df-ipo 18417  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lmhm 20483  df-lbs 20536  df-lvec 20564  df-sra 20633  df-rgmod 20634  df-nzr 20728  df-dsmm 21138  df-frlm 21153  df-uvc 21189  df-mat 21755  df-dim 32299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator