Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matdim Structured version   Visualization version   GIF version

Theorem matdim 33601
Description: Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
matdim.a 𝐴 = (𝐼 Mat 𝑅)
matdim.n 𝑁 = (♯‘𝐼)
Assertion
Ref Expression
matdim ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))

Proof of Theorem matdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
2 simpl 482 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐼 ∈ Fin)
3 xpfi 9328 . . . . 5 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
42, 2, 3syl2anc 584 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝐼 × 𝐼) ∈ Fin)
5 eqid 2735 . . . . 5 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
65frlmdim 33597 . . . 4 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
71, 4, 6syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
8 matdim.a . . . . . 6 𝐴 = (𝐼 Mat 𝑅)
98, 5matbas 22349 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘𝐴))
109eqcomd 2741 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
11 eqidd 2736 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘𝐴))
12 ssidd 3982 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) ⊆ (Base‘𝐴))
138, 5matplusg 22350 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(𝑅 freeLMod (𝐼 × 𝐼))) = (+g𝐴))
1413oveqdr 7431 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(+g‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥(+g𝐴)𝑦))
155frlmlvec 21719 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
161, 4, 15syl2anc 584 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
17 lveclmod 21062 . . . . . . . 8 ((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1816, 17syl 17 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1918adantr 480 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
20 simprl 770 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
218, 5matsca 22351 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘𝐴))
2221fveq2d 6879 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘𝐴)))
2322eqcomd 2741 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2423adantr 480 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2520, 24eleqtrd 2836 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
26 simprr 772 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
2710adantr 480 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2826, 27eleqtrd 2836 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
29 eqid 2735 . . . . . . 7 (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))
30 eqid 2735 . . . . . . 7 (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))
31 eqid 2735 . . . . . . 7 ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))
32 eqid 2735 . . . . . . 7 (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))
3329, 30, 31, 32lmodvscl 20833 . . . . . 6 (((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3419, 25, 28, 33syl3anc 1373 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3534, 27eleqtrrd 2837 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘𝐴))
368, 5matvsca 22352 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠𝐴))
3736oveqdr 7431 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥( ·𝑠𝐴)𝑦))
38 eqid 2735 . . . 4 (Scalar‘𝐴) = (Scalar‘𝐴)
39 eqidd 2736 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)))
4021fveq2d 6879 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (+g‘(Scalar‘𝐴)))
4140oveqdr 7431 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐴)))) → (𝑥(+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))𝑦) = (𝑥(+g‘(Scalar‘𝐴))𝑦))
42 drngring 20694 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
438matlmod 22365 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
4442, 43sylan2 593 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LMod)
458matsca2 22356 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 = (Scalar‘𝐴))
4645, 1eqeltrrd 2835 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘𝐴) ∈ DivRing)
4738islvec 21060 . . . . 5 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing))
4844, 46, 47sylanbrc 583 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LVec)
4910, 11, 12, 14, 35, 37, 30, 38, 23, 39, 41, 16, 48dimpropd 33594 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (dim‘𝐴))
50 hashxp 14450 . . . 4 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
512, 2, 50syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
527, 49, 513eqtr3d 2778 . 2 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = ((♯‘𝐼) · (♯‘𝐼)))
53 matdim.n . . 3 𝑁 = (♯‘𝐼)
5453, 53oveq12i 7415 . 2 (𝑁 · 𝑁) = ((♯‘𝐼) · (♯‘𝐼))
5552, 54eqtr4di 2788 1 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   × cxp 5652  cfv 6530  (class class class)co 7403  Fincfn 8957   · cmul 11132  chash 14346  Basecbs 17226  +gcplusg 17269  Scalarcsca 17272   ·𝑠 cvsca 17273  Ringcrg 20191  DivRingcdr 20687  LModclmod 20815  LVecclvec 21058   freeLMod cfrlm 21704   Mat cmat 22343  dimcldim 33584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-reg 9604  ax-inf2 9653  ax-ac2 10475  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-rpss 7715  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-er 8717  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-r1 9776  df-rank 9777  df-dju 9913  df-card 9951  df-acn 9954  df-ac 10128  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-xnn0 12573  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ocomp 17290  df-ds 17291  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-mri 17598  df-acs 17599  df-proset 18304  df-drs 18305  df-poset 18323  df-ipo 18536  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-nzr 20471  df-subrg 20528  df-drng 20689  df-lmod 20817  df-lss 20887  df-lsp 20927  df-lmhm 20978  df-lbs 21031  df-lvec 21059  df-sra 21129  df-rgmod 21130  df-dsmm 21690  df-frlm 21705  df-uvc 21741  df-mat 22344  df-dim 33585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator