Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matdim Structured version   Visualization version   GIF version

Theorem matdim 31101
Description: Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
matdim.a 𝐴 = (𝐼 Mat 𝑅)
matdim.n 𝑁 = (♯‘𝐼)
Assertion
Ref Expression
matdim ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))

Proof of Theorem matdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
2 simpl 486 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐼 ∈ Fin)
3 xpfi 8773 . . . . 5 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
42, 2, 3syl2anc 587 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝐼 × 𝐼) ∈ Fin)
5 eqid 2798 . . . . 5 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
65frlmdim 31097 . . . 4 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
71, 4, 6syl2anc 587 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
8 matdim.a . . . . . 6 𝐴 = (𝐼 Mat 𝑅)
98, 5matbas 21018 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘𝐴))
109eqcomd 2804 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
11 eqidd 2799 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘𝐴))
12 ssidd 3938 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) ⊆ (Base‘𝐴))
138, 5matplusg 21019 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(𝑅 freeLMod (𝐼 × 𝐼))) = (+g𝐴))
1413oveqdr 7163 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(+g‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥(+g𝐴)𝑦))
155frlmlvec 20450 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
161, 4, 15syl2anc 587 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
17 lveclmod 19871 . . . . . . . 8 ((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1816, 17syl 17 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1918adantr 484 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
20 simprl 770 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
218, 5matsca 21020 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘𝐴))
2221fveq2d 6649 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘𝐴)))
2322eqcomd 2804 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2423adantr 484 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2520, 24eleqtrd 2892 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
26 simprr 772 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
2710adantr 484 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2826, 27eleqtrd 2892 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
29 eqid 2798 . . . . . . 7 (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))
30 eqid 2798 . . . . . . 7 (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))
31 eqid 2798 . . . . . . 7 ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))
32 eqid 2798 . . . . . . 7 (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))
3329, 30, 31, 32lmodvscl 19644 . . . . . 6 (((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3419, 25, 28, 33syl3anc 1368 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3534, 27eleqtrrd 2893 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘𝐴))
368, 5matvsca 21021 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠𝐴))
3736oveqdr 7163 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥( ·𝑠𝐴)𝑦))
38 eqid 2798 . . . 4 (Scalar‘𝐴) = (Scalar‘𝐴)
39 eqidd 2799 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)))
4021fveq2d 6649 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (+g‘(Scalar‘𝐴)))
4140oveqdr 7163 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐴)))) → (𝑥(+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))𝑦) = (𝑥(+g‘(Scalar‘𝐴))𝑦))
42 drngring 19502 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
438matlmod 21034 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
4442, 43sylan2 595 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LMod)
458matsca2 21025 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 = (Scalar‘𝐴))
4645, 1eqeltrrd 2891 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘𝐴) ∈ DivRing)
4738islvec 19869 . . . . 5 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing))
4844, 46, 47sylanbrc 586 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LVec)
4910, 11, 12, 14, 35, 37, 30, 38, 23, 39, 41, 16, 48dimpropd 31095 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (dim‘𝐴))
50 hashxp 13791 . . . 4 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
512, 2, 50syl2anc 587 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
527, 49, 513eqtr3d 2841 . 2 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = ((♯‘𝐼) · (♯‘𝐼)))
53 matdim.n . . 3 𝑁 = (♯‘𝐼)
5453, 53oveq12i 7147 . 2 (𝑁 · 𝑁) = ((♯‘𝐼) · (♯‘𝐼))
5552, 54eqtr4di 2851 1 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111   × cxp 5517  cfv 6324  (class class class)co 7135  Fincfn 8492   · cmul 10531  chash 13686  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  Ringcrg 19290  DivRingcdr 19495  LModclmod 19627  LVecclvec 19867   freeLMod cfrlm 20435   Mat cmat 21012  dimcldim 31087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ocomp 16578  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-mri 16851  df-acs 16852  df-proset 17530  df-drs 17531  df-poset 17548  df-ipo 17754  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lbs 19840  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-nzr 20024  df-dsmm 20421  df-frlm 20436  df-uvc 20472  df-mat 21013  df-dim 31088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator