Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matdim Structured version   Visualization version   GIF version

Theorem matdim 33642
Description: Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
matdim.a 𝐴 = (𝐼 Mat 𝑅)
matdim.n 𝑁 = (♯‘𝐼)
Assertion
Ref Expression
matdim ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))

Proof of Theorem matdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
2 simpl 482 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐼 ∈ Fin)
3 xpfi 9355 . . . . 5 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
42, 2, 3syl2anc 584 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝐼 × 𝐼) ∈ Fin)
5 eqid 2734 . . . . 5 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
65frlmdim 33638 . . . 4 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
71, 4, 6syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
8 matdim.a . . . . . 6 𝐴 = (𝐼 Mat 𝑅)
98, 5matbas 22432 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘𝐴))
109eqcomd 2740 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
11 eqidd 2735 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘𝐴))
12 ssidd 4018 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) ⊆ (Base‘𝐴))
138, 5matplusg 22433 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(𝑅 freeLMod (𝐼 × 𝐼))) = (+g𝐴))
1413oveqdr 7458 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(+g‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥(+g𝐴)𝑦))
155frlmlvec 21798 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
161, 4, 15syl2anc 584 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
17 lveclmod 21122 . . . . . . . 8 ((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1816, 17syl 17 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1918adantr 480 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
20 simprl 771 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
218, 5matsca 22434 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘𝐴))
2221fveq2d 6910 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘𝐴)))
2322eqcomd 2740 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2423adantr 480 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2520, 24eleqtrd 2840 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
26 simprr 773 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
2710adantr 480 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2826, 27eleqtrd 2840 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
29 eqid 2734 . . . . . . 7 (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))
30 eqid 2734 . . . . . . 7 (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))
31 eqid 2734 . . . . . . 7 ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))
32 eqid 2734 . . . . . . 7 (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))
3329, 30, 31, 32lmodvscl 20892 . . . . . 6 (((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3419, 25, 28, 33syl3anc 1370 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3534, 27eleqtrrd 2841 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘𝐴))
368, 5matvsca 22436 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠𝐴))
3736oveqdr 7458 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥( ·𝑠𝐴)𝑦))
38 eqid 2734 . . . 4 (Scalar‘𝐴) = (Scalar‘𝐴)
39 eqidd 2735 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)))
4021fveq2d 6910 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (+g‘(Scalar‘𝐴)))
4140oveqdr 7458 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐴)))) → (𝑥(+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))𝑦) = (𝑥(+g‘(Scalar‘𝐴))𝑦))
42 drngring 20752 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
438matlmod 22450 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
4442, 43sylan2 593 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LMod)
458matsca2 22441 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 = (Scalar‘𝐴))
4645, 1eqeltrrd 2839 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘𝐴) ∈ DivRing)
4738islvec 21120 . . . . 5 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing))
4844, 46, 47sylanbrc 583 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LVec)
4910, 11, 12, 14, 35, 37, 30, 38, 23, 39, 41, 16, 48dimpropd 33635 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (dim‘𝐴))
50 hashxp 14469 . . . 4 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
512, 2, 50syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
527, 49, 513eqtr3d 2782 . 2 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = ((♯‘𝐼) · (♯‘𝐼)))
53 matdim.n . . 3 𝑁 = (♯‘𝐼)
5453, 53oveq12i 7442 . 2 (𝑁 · 𝑁) = ((♯‘𝐼) · (♯‘𝐼))
5552, 54eqtr4di 2792 1 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105   × cxp 5686  cfv 6562  (class class class)co 7430  Fincfn 8983   · cmul 11157  chash 14365  Basecbs 17244  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  Ringcrg 20250  DivRingcdr 20745  LModclmod 20874  LVecclvec 21118   freeLMod cfrlm 21783   Mat cmat 22426  dimcldim 33625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-reg 9629  ax-inf2 9678  ax-ac2 10500  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-rpss 7741  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-r1 9801  df-rank 9802  df-dju 9938  df-card 9976  df-acn 9979  df-ac 10153  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ocomp 17318  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-mri 17632  df-acs 17633  df-proset 18351  df-drs 18352  df-poset 18370  df-ipo 18585  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-nzr 20529  df-subrg 20586  df-drng 20747  df-lmod 20876  df-lss 20947  df-lsp 20987  df-lmhm 21038  df-lbs 21091  df-lvec 21119  df-sra 21189  df-rgmod 21190  df-dsmm 21769  df-frlm 21784  df-uvc 21820  df-mat 22427  df-dim 33626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator