Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  matdim Structured version   Visualization version   GIF version

Theorem matdim 33587
Description: Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
matdim.a 𝐴 = (𝐼 Mat 𝑅)
matdim.n 𝑁 = (♯‘𝐼)
Assertion
Ref Expression
matdim ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))

Proof of Theorem matdim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 ∈ DivRing)
2 simpl 482 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐼 ∈ Fin)
3 xpfi 9227 . . . . 5 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (𝐼 × 𝐼) ∈ Fin)
42, 2, 3syl2anc 584 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝐼 × 𝐼) ∈ Fin)
5 eqid 2729 . . . . 5 (𝑅 freeLMod (𝐼 × 𝐼)) = (𝑅 freeLMod (𝐼 × 𝐼))
65frlmdim 33583 . . . 4 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
71, 4, 6syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (♯‘(𝐼 × 𝐼)))
8 matdim.a . . . . . 6 𝐴 = (𝐼 Mat 𝑅)
98, 5matbas 22316 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘𝐴))
109eqcomd 2735 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
11 eqidd 2730 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) = (Base‘𝐴))
12 ssidd 3961 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘𝐴) ⊆ (Base‘𝐴))
138, 5matplusg 22317 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(𝑅 freeLMod (𝐼 × 𝐼))) = (+g𝐴))
1413oveqdr 7381 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(+g‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥(+g𝐴)𝑦))
155frlmlvec 21686 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ (𝐼 × 𝐼) ∈ Fin) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
161, 4, 15syl2anc 584 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec)
17 lveclmod 21028 . . . . . . . 8 ((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LVec → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1816, 17syl 17 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
1918adantr 480 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod)
20 simprl 770 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘𝐴)))
218, 5matsca 22318 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘𝐴))
2221fveq2d 6830 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘𝐴)))
2322eqcomd 2735 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2423adantr 480 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
2520, 24eleqtrd 2830 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))))
26 simprr 772 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
2710adantr 480 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
2826, 27eleqtrd 2830 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
29 eqid 2729 . . . . . . 7 (Base‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))
30 eqid 2729 . . . . . . 7 (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))) = (Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))
31 eqid 2729 . . . . . . 7 ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))
32 eqid 2729 . . . . . . 7 (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))
3329, 30, 31, 32lmodvscl 20799 . . . . . 6 (((𝑅 freeLMod (𝐼 × 𝐼)) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼)))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3419, 25, 28, 33syl3anc 1373 . . . . 5 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘(𝑅 freeLMod (𝐼 × 𝐼))))
3534, 27eleqtrrd 2831 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) ∈ (Base‘𝐴))
368, 5matvsca 22319 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → ( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼))) = ( ·𝑠𝐴))
3736oveqdr 7381 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝐼 × 𝐼)))𝑦) = (𝑥( ·𝑠𝐴)𝑦))
38 eqid 2729 . . . 4 (Scalar‘𝐴) = (Scalar‘𝐴)
39 eqidd 2730 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴)))
4021fveq2d 6830 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼)))) = (+g‘(Scalar‘𝐴)))
4140oveqdr 7381 . . . 4 (((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) ∧ (𝑥 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑦 ∈ (Base‘(Scalar‘𝐴)))) → (𝑥(+g‘(Scalar‘(𝑅 freeLMod (𝐼 × 𝐼))))𝑦) = (𝑥(+g‘(Scalar‘𝐴))𝑦))
42 drngring 20639 . . . . . 6 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
438matlmod 22332 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
4442, 43sylan2 593 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LMod)
458matsca2 22323 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝑅 = (Scalar‘𝐴))
4645, 1eqeltrrd 2829 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (Scalar‘𝐴) ∈ DivRing)
4738islvec 21026 . . . . 5 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing))
4844, 46, 47sylanbrc 583 . . . 4 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → 𝐴 ∈ LVec)
4910, 11, 12, 14, 35, 37, 30, 38, 23, 39, 41, 16, 48dimpropd 33580 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘(𝑅 freeLMod (𝐼 × 𝐼))) = (dim‘𝐴))
50 hashxp 14359 . . . 4 ((𝐼 ∈ Fin ∧ 𝐼 ∈ Fin) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
512, 2, 50syl2anc 584 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (♯‘(𝐼 × 𝐼)) = ((♯‘𝐼) · (♯‘𝐼)))
527, 49, 513eqtr3d 2772 . 2 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = ((♯‘𝐼) · (♯‘𝐼)))
53 matdim.n . . 3 𝑁 = (♯‘𝐼)
5453, 53oveq12i 7365 . 2 (𝑁 · 𝑁) = ((♯‘𝐼) · (♯‘𝐼))
5552, 54eqtr4di 2782 1 ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   × cxp 5621  cfv 6486  (class class class)co 7353  Fincfn 8879   · cmul 11033  chash 14255  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  Ringcrg 20136  DivRingcdr 20632  LModclmod 20781  LVecclvec 21024   freeLMod cfrlm 21671   Mat cmat 22310  dimcldim 33570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-mat 22311  df-dim 33571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator