Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlvec2 Structured version   Visualization version   GIF version

Theorem lmhmlvec2 31751
Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.)
Assertion
Ref Expression
lmhmlvec2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)

Proof of Theorem lmhmlvec2
StepHypRef Expression
1 lmhmlmod2 20343 . . 3 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod)
21adantl 483 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LMod)
3 eqid 2736 . . . . 5 (Scalar‘𝑉) = (Scalar‘𝑉)
4 eqid 2736 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
53, 4lmhmsca 20341 . . . 4 (𝐹 ∈ (𝑉 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑉))
65adantl 483 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) = (Scalar‘𝑉))
73lvecdrng 20416 . . . 4 (𝑉 ∈ LVec → (Scalar‘𝑉) ∈ DivRing)
87adantr 482 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑉) ∈ DivRing)
96, 8eqeltrd 2837 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) ∈ DivRing)
104islvec 20415 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ (Scalar‘𝑈) ∈ DivRing))
112, 9, 10sylanbrc 584 1 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  cfv 6458  (class class class)co 7307  Scalarcsca 17014  DivRingcdr 20040  LModclmod 20172   LMHom clmhm 20330  LVecclvec 20413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-iota 6410  df-fun 6460  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-lmhm 20333  df-lvec 20414
This theorem is referenced by:  imlmhm  31753  dimkerim  31757
  Copyright terms: Public domain W3C validator