Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmlvec2 | Structured version Visualization version GIF version |
Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.) |
Ref | Expression |
---|---|
lmhmlvec2 | ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod2 20343 | . . 3 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod) | |
2 | 1 | adantl 483 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LMod) |
3 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
4 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
5 | 3, 4 | lmhmsca 20341 | . . . 4 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑉)) |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) = (Scalar‘𝑉)) |
7 | 3 | lvecdrng 20416 | . . . 4 ⊢ (𝑉 ∈ LVec → (Scalar‘𝑉) ∈ DivRing) |
8 | 7 | adantr 482 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑉) ∈ DivRing) |
9 | 6, 8 | eqeltrd 2837 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) ∈ DivRing) |
10 | 4 | islvec 20415 | . 2 ⊢ (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ (Scalar‘𝑈) ∈ DivRing)) |
11 | 2, 9, 10 | sylanbrc 584 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ‘cfv 6458 (class class class)co 7307 Scalarcsca 17014 DivRingcdr 20040 LModclmod 20172 LMHom clmhm 20330 LVecclvec 20413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-sbc 3722 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-lmhm 20333 df-lvec 20414 |
This theorem is referenced by: imlmhm 31753 dimkerim 31757 |
Copyright terms: Public domain | W3C validator |