Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlvec2 Structured version   Visualization version   GIF version

Theorem lmhmlvec2 33679
Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.)
Assertion
Ref Expression
lmhmlvec2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)

Proof of Theorem lmhmlvec2
StepHypRef Expression
1 lmhmlmod2 21058 . . 3 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod)
21adantl 481 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LMod)
3 eqid 2737 . . . . 5 (Scalar‘𝑉) = (Scalar‘𝑉)
4 eqid 2737 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
53, 4lmhmsca 21056 . . . 4 (𝐹 ∈ (𝑉 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑉))
65adantl 481 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) = (Scalar‘𝑉))
73lvecdrng 21131 . . . 4 (𝑉 ∈ LVec → (Scalar‘𝑉) ∈ DivRing)
87adantr 480 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑉) ∈ DivRing)
96, 8eqeltrd 2841 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) ∈ DivRing)
104islvec 21130 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ (Scalar‘𝑈) ∈ DivRing))
112, 9, 10sylanbrc 583 1 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6569  (class class class)co 7438  Scalarcsca 17310  DivRingcdr 20755  LModclmod 20884   LMHom clmhm 21045  LVecclvec 21128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-lmhm 21048  df-lvec 21129
This theorem is referenced by:  imlmhm  33681  dimkerim  33687  algextdeglem8  33762
  Copyright terms: Public domain W3C validator