| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmlvec2 | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.) |
| Ref | Expression |
|---|---|
| lmhmlvec2 | ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod2 20945 | . . 3 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LMod) |
| 3 | eqid 2730 | . . . . 5 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 5 | 3, 4 | lmhmsca 20943 | . . . 4 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑉)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) = (Scalar‘𝑉)) |
| 7 | 3 | lvecdrng 21018 | . . . 4 ⊢ (𝑉 ∈ LVec → (Scalar‘𝑉) ∈ DivRing) |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑉) ∈ DivRing) |
| 9 | 6, 8 | eqeltrd 2829 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) ∈ DivRing) |
| 10 | 4 | islvec 21017 | . 2 ⊢ (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ (Scalar‘𝑈) ∈ DivRing)) |
| 11 | 2, 9, 10 | sylanbrc 583 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Scalarcsca 17229 DivRingcdr 20644 LModclmod 20772 LMHom clmhm 20932 LVecclvec 21015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-lmhm 20935 df-lvec 21016 |
| This theorem is referenced by: imlmhm 33623 dimkerim 33629 algextdeglem8 33720 |
| Copyright terms: Public domain | W3C validator |