Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmlvec2 | Structured version Visualization version GIF version |
Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.) |
Ref | Expression |
---|---|
lmhmlvec2 | ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod2 20275 | . . 3 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LMod) |
3 | eqid 2739 | . . . . 5 ⊢ (Scalar‘𝑉) = (Scalar‘𝑉) | |
4 | eqid 2739 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
5 | 3, 4 | lmhmsca 20273 | . . . 4 ⊢ (𝐹 ∈ (𝑉 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑉)) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) = (Scalar‘𝑉)) |
7 | 3 | lvecdrng 20348 | . . . 4 ⊢ (𝑉 ∈ LVec → (Scalar‘𝑉) ∈ DivRing) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑉) ∈ DivRing) |
9 | 6, 8 | eqeltrd 2840 | . 2 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) ∈ DivRing) |
10 | 4 | islvec 20347 | . 2 ⊢ (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ (Scalar‘𝑈) ∈ DivRing)) |
11 | 2, 9, 10 | sylanbrc 582 | 1 ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 Scalarcsca 16946 DivRingcdr 19972 LModclmod 20104 LMHom clmhm 20262 LVecclvec 20345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-lmhm 20265 df-lvec 20346 |
This theorem is referenced by: imlmhm 31683 dimkerim 31687 |
Copyright terms: Public domain | W3C validator |