![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmlvec2 | Structured version Visualization version GIF version |
Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.) |
Ref | Expression |
---|---|
lmhmlvec2 | β’ ((π β LVec β§ πΉ β (π LMHom π)) β π β LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod2 20643 | . . 3 β’ (πΉ β (π LMHom π) β π β LMod) | |
2 | 1 | adantl 483 | . 2 β’ ((π β LVec β§ πΉ β (π LMHom π)) β π β LMod) |
3 | eqid 2733 | . . . . 5 β’ (Scalarβπ) = (Scalarβπ) | |
4 | eqid 2733 | . . . . 5 β’ (Scalarβπ) = (Scalarβπ) | |
5 | 3, 4 | lmhmsca 20641 | . . . 4 β’ (πΉ β (π LMHom π) β (Scalarβπ) = (Scalarβπ)) |
6 | 5 | adantl 483 | . . 3 β’ ((π β LVec β§ πΉ β (π LMHom π)) β (Scalarβπ) = (Scalarβπ)) |
7 | 3 | lvecdrng 20716 | . . . 4 β’ (π β LVec β (Scalarβπ) β DivRing) |
8 | 7 | adantr 482 | . . 3 β’ ((π β LVec β§ πΉ β (π LMHom π)) β (Scalarβπ) β DivRing) |
9 | 6, 8 | eqeltrd 2834 | . 2 β’ ((π β LVec β§ πΉ β (π LMHom π)) β (Scalarβπ) β DivRing) |
10 | 4 | islvec 20715 | . 2 β’ (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing)) |
11 | 2, 9, 10 | sylanbrc 584 | 1 β’ ((π β LVec β§ πΉ β (π LMHom π)) β π β LVec) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 βcfv 6544 (class class class)co 7409 Scalarcsca 17200 DivRingcdr 20357 LModclmod 20471 LMHom clmhm 20630 LVecclvec 20713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-lmhm 20633 df-lvec 20714 |
This theorem is referenced by: imlmhm 32706 dimkerim 32712 |
Copyright terms: Public domain | W3C validator |