Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlvec2 Structured version   Visualization version   GIF version

Theorem lmhmlvec2 31681
Description: A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.)
Assertion
Ref Expression
lmhmlvec2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)

Proof of Theorem lmhmlvec2
StepHypRef Expression
1 lmhmlmod2 20275 . . 3 (𝐹 ∈ (𝑉 LMHom 𝑈) → 𝑈 ∈ LMod)
21adantl 481 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LMod)
3 eqid 2739 . . . . 5 (Scalar‘𝑉) = (Scalar‘𝑉)
4 eqid 2739 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
53, 4lmhmsca 20273 . . . 4 (𝐹 ∈ (𝑉 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑉))
65adantl 481 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) = (Scalar‘𝑉))
73lvecdrng 20348 . . . 4 (𝑉 ∈ LVec → (Scalar‘𝑉) ∈ DivRing)
87adantr 480 . . 3 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑉) ∈ DivRing)
96, 8eqeltrd 2840 . 2 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (Scalar‘𝑈) ∈ DivRing)
104islvec 20347 . 2 (𝑈 ∈ LVec ↔ (𝑈 ∈ LMod ∧ (Scalar‘𝑈) ∈ DivRing))
112, 9, 10sylanbrc 582 1 ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  Scalarcsca 16946  DivRingcdr 19972  LModclmod 20104   LMHom clmhm 20262  LVecclvec 20345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-lmhm 20265  df-lvec 20346
This theorem is referenced by:  imlmhm  31683  dimkerim  31687
  Copyright terms: Public domain W3C validator