Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sralvec Structured version   Visualization version   GIF version

Theorem sralvec 33557
Description: Given a sub division ring 𝐹 of a division ring 𝐸, 𝐸 may be considered as a vector space over 𝐹, which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023.)
Hypotheses
Ref Expression
sralvec.a 𝐴 = ((subringAlg ‘𝐸)‘𝑈)
sralvec.f 𝐹 = (𝐸s 𝑈)
Assertion
Ref Expression
sralvec ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)

Proof of Theorem sralvec
StepHypRef Expression
1 sralvec.a . . 3 𝐴 = ((subringAlg ‘𝐸)‘𝑈)
2 eqid 2729 . . . . 5 ((subringAlg ‘𝐸)‘𝑈) = ((subringAlg ‘𝐸)‘𝑈)
32sralmod 21109 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝑈) ∈ LMod)
433ad2ant3 1135 . . 3 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝑈) ∈ LMod)
51, 4eqeltrid 2832 . 2 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LMod)
6 sralvec.f . . . . 5 𝐹 = (𝐸s 𝑈)
71a1i 11 . . . . . 6 (𝑈 ∈ (SubRing‘𝐸) → 𝐴 = ((subringAlg ‘𝐸)‘𝑈))
8 eqid 2729 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
98subrgss 20475 . . . . . 6 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
107, 9srasca 21102 . . . . 5 (𝑈 ∈ (SubRing‘𝐸) → (𝐸s 𝑈) = (Scalar‘𝐴))
116, 10eqtrid 2776 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝐹 = (Scalar‘𝐴))
12113ad2ant3 1135 . . 3 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐹 = (Scalar‘𝐴))
13 simp2 1137 . . 3 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐹 ∈ DivRing)
1412, 13eqeltrrd 2829 . 2 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → (Scalar‘𝐴) ∈ DivRing)
15 eqid 2729 . . 3 (Scalar‘𝐴) = (Scalar‘𝐴)
1615islvec 21026 . 2 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing))
175, 14, 16sylanbrc 583 1 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  Scalarcsca 17182  SubRingcsubrg 20472  DivRingcdr 20632  LModclmod 20781  LVecclvec 21024  subringAlg csra 21093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-subg 19020  df-mgp 20044  df-ur 20085  df-ring 20138  df-subrg 20473  df-lmod 20783  df-lvec 21025  df-sra 21095
This theorem is referenced by:  srafldlvec  33558  drgextgsum  33566  rgmoddimOLD  33582  fedgmullem1  33601  fedgmullem2  33602  fedgmul  33603  fldextsralvec  33627  extdgcl  33628  extdggt0  33629  fldextrspunlem1  33646
  Copyright terms: Public domain W3C validator