Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sralvec | Structured version Visualization version GIF version |
Description: Given a sub division ring 𝐹 of a division ring 𝐸, 𝐸 may be considered as a vector space over 𝐹, which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023.) |
Ref | Expression |
---|---|
sralvec.a | ⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑈) |
sralvec.f | ⊢ 𝐹 = (𝐸 ↾s 𝑈) |
Ref | Expression |
---|---|
sralvec | ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sralvec.a | . . 3 ⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑈) | |
2 | eqid 2738 | . . . . 5 ⊢ ((subringAlg ‘𝐸)‘𝑈) = ((subringAlg ‘𝐸)‘𝑈) | |
3 | 2 | sralmod 20457 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝑈) ∈ LMod) |
4 | 3 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝑈) ∈ LMod) |
5 | 1, 4 | eqeltrid 2843 | . 2 ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LMod) |
6 | sralvec.f | . . . . 5 ⊢ 𝐹 = (𝐸 ↾s 𝑈) | |
7 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝐴 = ((subringAlg ‘𝐸)‘𝑈)) |
8 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
9 | 8 | subrgss 20025 | . . . . . 6 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸)) |
10 | 7, 9 | srasca 20447 | . . . . 5 ⊢ (𝑈 ∈ (SubRing‘𝐸) → (𝐸 ↾s 𝑈) = (Scalar‘𝐴)) |
11 | 6, 10 | eqtrid 2790 | . . . 4 ⊢ (𝑈 ∈ (SubRing‘𝐸) → 𝐹 = (Scalar‘𝐴)) |
12 | 11 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐹 = (Scalar‘𝐴)) |
13 | simp2 1136 | . . 3 ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐹 ∈ DivRing) | |
14 | 12, 13 | eqeltrrd 2840 | . 2 ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → (Scalar‘𝐴) ∈ DivRing) |
15 | eqid 2738 | . . 3 ⊢ (Scalar‘𝐴) = (Scalar‘𝐴) | |
16 | 15 | islvec 20366 | . 2 ⊢ (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing)) |
17 | 5, 14, 16 | sylanbrc 583 | 1 ⊢ ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 Scalarcsca 16965 DivRingcdr 19991 SubRingcsubrg 20020 LModclmod 20123 LVecclvec 20364 subringAlg csra 20430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lvec 20365 df-sra 20434 |
This theorem is referenced by: srafldlvec 31676 drgextgsum 31682 rgmoddim 31693 fedgmullem1 31710 fedgmullem2 31711 fedgmul 31712 fldextsralvec 31730 extdgcl 31731 extdggt0 31732 |
Copyright terms: Public domain | W3C validator |