Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sralvec Structured version   Visualization version   GIF version

Theorem sralvec 31058
 Description: Given a sub division ring 𝐹 of a division ring 𝐸, 𝐸 may be considered as a vector space over 𝐹, which becomes the field of scalars. (Contributed by Thierry Arnoux, 24-May-2023.)
Hypotheses
Ref Expression
sralvec.a 𝐴 = ((subringAlg ‘𝐸)‘𝑈)
sralvec.f 𝐹 = (𝐸s 𝑈)
Assertion
Ref Expression
sralvec ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)

Proof of Theorem sralvec
StepHypRef Expression
1 sralvec.a . . 3 𝐴 = ((subringAlg ‘𝐸)‘𝑈)
2 eqid 2824 . . . . 5 ((subringAlg ‘𝐸)‘𝑈) = ((subringAlg ‘𝐸)‘𝑈)
32sralmod 19961 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → ((subringAlg ‘𝐸)‘𝑈) ∈ LMod)
433ad2ant3 1132 . . 3 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → ((subringAlg ‘𝐸)‘𝑈) ∈ LMod)
51, 4eqeltrid 2920 . 2 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LMod)
6 sralvec.f . . . . 5 𝐹 = (𝐸s 𝑈)
71a1i 11 . . . . . 6 (𝑈 ∈ (SubRing‘𝐸) → 𝐴 = ((subringAlg ‘𝐸)‘𝑈))
8 eqid 2824 . . . . . . 7 (Base‘𝐸) = (Base‘𝐸)
98subrgss 19538 . . . . . 6 (𝑈 ∈ (SubRing‘𝐸) → 𝑈 ⊆ (Base‘𝐸))
107, 9srasca 19955 . . . . 5 (𝑈 ∈ (SubRing‘𝐸) → (𝐸s 𝑈) = (Scalar‘𝐴))
116, 10syl5eq 2871 . . . 4 (𝑈 ∈ (SubRing‘𝐸) → 𝐹 = (Scalar‘𝐴))
12113ad2ant3 1132 . . 3 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐹 = (Scalar‘𝐴))
13 simp2 1134 . . 3 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐹 ∈ DivRing)
1412, 13eqeltrrd 2917 . 2 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → (Scalar‘𝐴) ∈ DivRing)
15 eqid 2824 . . 3 (Scalar‘𝐴) = (Scalar‘𝐴)
1615islvec 19878 . 2 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ (Scalar‘𝐴) ∈ DivRing))
175, 14, 16sylanbrc 586 1 ((𝐸 ∈ DivRing ∧ 𝐹 ∈ DivRing ∧ 𝑈 ∈ (SubRing‘𝐸)) → 𝐴 ∈ LVec)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ‘cfv 6345  (class class class)co 7151  Basecbs 16485   ↾s cress 16486  Scalarcsca 16570  DivRingcdr 19504  SubRingcsubrg 19533  LModclmod 19636  LVecclvec 19876  subringAlg csra 19942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-subg 18278  df-mgp 19242  df-ur 19254  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lvec 19877  df-sra 19946 This theorem is referenced by:  srafldlvec  31059  drgextgsum  31065  rgmoddim  31076  fedgmullem1  31093  fedgmullem2  31094  fedgmul  31095  fldextsralvec  31113  extdgcl  31114  extdggt0  31115
 Copyright terms: Public domain W3C validator