MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlvec Structured version   Visualization version   GIF version

Theorem lmhmlvec 21127
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.)
Assertion
Ref Expression
lmhmlvec (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))

Proof of Theorem lmhmlvec
StepHypRef Expression
1 lmhmlmod1 21050 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 lmhmlmod2 21049 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
31, 22thd 265 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod))
4 eqid 2735 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2735 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
64, 5lmhmsca 21047 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
76eqcomd 2741 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇))
87eleq1d 2824 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) ∈ DivRing ↔ (Scalar‘𝑇) ∈ DivRing))
93, 8anbi12d 632 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing)))
104islvec 21121 . 2 (𝑆 ∈ LVec ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing))
115islvec 21121 . 2 (𝑇 ∈ LVec ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing))
129, 10, 113bitr4g 314 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  cfv 6563  (class class class)co 7431  Scalarcsca 17301  DivRingcdr 20746  LModclmod 20875   LMHom clmhm 21036  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-lmhm 21039  df-lvec 21120
This theorem is referenced by:  lmimdim  33631
  Copyright terms: Public domain W3C validator