![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmlvec | Structured version Visualization version GIF version |
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.) |
Ref | Expression |
---|---|
lmhmlvec | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod1 20930 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | |
2 | lmhmlmod2 20929 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
3 | 1, 2 | 2thd 264 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod)) |
4 | eqid 2725 | . . . . . 6 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
5 | eqid 2725 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
6 | 4, 5 | lmhmsca 20927 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
7 | 6 | eqcomd 2731 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇)) |
8 | 7 | eleq1d 2810 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) ∈ DivRing ↔ (Scalar‘𝑇) ∈ DivRing)) |
9 | 3, 8 | anbi12d 630 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing))) |
10 | 4 | islvec 21001 | . 2 ⊢ (𝑆 ∈ LVec ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing)) |
11 | 5 | islvec 21001 | . 2 ⊢ (𝑇 ∈ LVec ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing)) |
12 | 9, 10, 11 | 3bitr4g 313 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Scalarcsca 17239 DivRingcdr 20636 LModclmod 20755 LMHom clmhm 20916 LVecclvec 20999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-lmhm 20919 df-lvec 21000 |
This theorem is referenced by: lmimdim 33432 |
Copyright terms: Public domain | W3C validator |