| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlvec | Structured version Visualization version GIF version | ||
| Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.) |
| Ref | Expression |
|---|---|
| lmhmlvec | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod1 20996 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | |
| 2 | lmhmlmod2 20995 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
| 3 | 1, 2 | 2thd 265 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod)) |
| 4 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 5 | eqid 2736 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 6 | 4, 5 | lmhmsca 20993 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
| 7 | 6 | eqcomd 2742 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇)) |
| 8 | 7 | eleq1d 2820 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) ∈ DivRing ↔ (Scalar‘𝑇) ∈ DivRing)) |
| 9 | 3, 8 | anbi12d 632 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing))) |
| 10 | 4 | islvec 21067 | . 2 ⊢ (𝑆 ∈ LVec ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing)) |
| 11 | 5 | islvec 21067 | . 2 ⊢ (𝑇 ∈ LVec ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing)) |
| 12 | 9, 10, 11 | 3bitr4g 314 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Scalarcsca 17279 DivRingcdr 20694 LModclmod 20822 LMHom clmhm 20982 LVecclvec 21065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-lmhm 20985 df-lvec 21066 |
| This theorem is referenced by: lmimdim 33648 |
| Copyright terms: Public domain | W3C validator |