Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmhmlvec Structured version   Visualization version   GIF version

Theorem lmhmlvec 39197
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.)
Assertion
Ref Expression
lmhmlvec (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))

Proof of Theorem lmhmlvec
StepHypRef Expression
1 lmhmlmod1 19805 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 lmhmlmod2 19804 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
31, 22thd 267 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod))
4 eqid 2821 . . . . . 6 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2821 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
64, 5lmhmsca 19802 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
76eqcomd 2827 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇))
87eleq1d 2897 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) ∈ DivRing ↔ (Scalar‘𝑇) ∈ DivRing))
93, 8anbi12d 632 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing)))
104islvec 19876 . 2 (𝑆 ∈ LVec ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing))
115islvec 19876 . 2 (𝑇 ∈ LVec ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing))
129, 10, 113bitr4g 316 1 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  cfv 6355  (class class class)co 7156  Scalarcsca 16568  DivRingcdr 19502  LModclmod 19634   LMHom clmhm 19791  LVecclvec 19874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-lmhm 19794  df-lvec 19875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator