MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlvec Structured version   Visualization version   GIF version

Theorem lmhmlvec 20865
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.)
Assertion
Ref Expression
lmhmlvec (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))

Proof of Theorem lmhmlvec
StepHypRef Expression
1 lmhmlmod1 20788 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝑆 ∈ LMod)
2 lmhmlmod2 20787 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ 𝑇 ∈ LMod)
31, 22thd 264 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod))
4 eqid 2732 . . . . . 6 (Scalarβ€˜π‘†) = (Scalarβ€˜π‘†)
5 eqid 2732 . . . . . 6 (Scalarβ€˜π‘‡) = (Scalarβ€˜π‘‡)
64, 5lmhmsca 20785 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ (Scalarβ€˜π‘‡) = (Scalarβ€˜π‘†))
76eqcomd 2738 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ (Scalarβ€˜π‘†) = (Scalarβ€˜π‘‡))
87eleq1d 2818 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ ((Scalarβ€˜π‘†) ∈ DivRing ↔ (Scalarβ€˜π‘‡) ∈ DivRing))
93, 8anbi12d 631 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ ((𝑆 ∈ LMod ∧ (Scalarβ€˜π‘†) ∈ DivRing) ↔ (𝑇 ∈ LMod ∧ (Scalarβ€˜π‘‡) ∈ DivRing)))
104islvec 20859 . 2 (𝑆 ∈ LVec ↔ (𝑆 ∈ LMod ∧ (Scalarβ€˜π‘†) ∈ DivRing))
115islvec 20859 . 2 (𝑇 ∈ LVec ↔ (𝑇 ∈ LMod ∧ (Scalarβ€˜π‘‡) ∈ DivRing))
129, 10, 113bitr4g 313 1 (𝐹 ∈ (𝑆 LMHom 𝑇) β†’ (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∈ wcel 2106  β€˜cfv 6543  (class class class)co 7411  Scalarcsca 17204  DivRingcdr 20500  LModclmod 20614   LMHom clmhm 20774  LVecclvec 20857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-lmhm 20777  df-lvec 20858
This theorem is referenced by:  lmimdim  32964
  Copyright terms: Public domain W3C validator