![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmlvec | Structured version Visualization version GIF version |
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.) |
Ref | Expression |
---|---|
lmhmlvec | β’ (πΉ β (π LMHom π) β (π β LVec β π β LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod1 20788 | . . . 4 β’ (πΉ β (π LMHom π) β π β LMod) | |
2 | lmhmlmod2 20787 | . . . 4 β’ (πΉ β (π LMHom π) β π β LMod) | |
3 | 1, 2 | 2thd 264 | . . 3 β’ (πΉ β (π LMHom π) β (π β LMod β π β LMod)) |
4 | eqid 2732 | . . . . . 6 β’ (Scalarβπ) = (Scalarβπ) | |
5 | eqid 2732 | . . . . . 6 β’ (Scalarβπ) = (Scalarβπ) | |
6 | 4, 5 | lmhmsca 20785 | . . . . 5 β’ (πΉ β (π LMHom π) β (Scalarβπ) = (Scalarβπ)) |
7 | 6 | eqcomd 2738 | . . . 4 β’ (πΉ β (π LMHom π) β (Scalarβπ) = (Scalarβπ)) |
8 | 7 | eleq1d 2818 | . . 3 β’ (πΉ β (π LMHom π) β ((Scalarβπ) β DivRing β (Scalarβπ) β DivRing)) |
9 | 3, 8 | anbi12d 631 | . 2 β’ (πΉ β (π LMHom π) β ((π β LMod β§ (Scalarβπ) β DivRing) β (π β LMod β§ (Scalarβπ) β DivRing))) |
10 | 4 | islvec 20859 | . 2 β’ (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing)) |
11 | 5 | islvec 20859 | . 2 β’ (π β LVec β (π β LMod β§ (Scalarβπ) β DivRing)) |
12 | 9, 10, 11 | 3bitr4g 313 | 1 β’ (πΉ β (π LMHom π) β (π β LVec β π β LVec)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 βcfv 6543 (class class class)co 7411 Scalarcsca 17204 DivRingcdr 20500 LModclmod 20614 LMHom clmhm 20774 LVecclvec 20857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-lmhm 20777 df-lvec 20858 |
This theorem is referenced by: lmimdim 32964 |
Copyright terms: Public domain | W3C validator |