Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmhmlvec | Structured version Visualization version GIF version |
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.) |
Ref | Expression |
---|---|
lmhmlvec | ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlmod1 20210 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) | |
2 | lmhmlmod2 20209 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) | |
3 | 1, 2 | 2thd 264 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LMod ↔ 𝑇 ∈ LMod)) |
4 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
5 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
6 | 4, 5 | lmhmsca 20207 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
7 | 6 | eqcomd 2744 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑆) = (Scalar‘𝑇)) |
8 | 7 | eleq1d 2823 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((Scalar‘𝑆) ∈ DivRing ↔ (Scalar‘𝑇) ∈ DivRing)) |
9 | 3, 8 | anbi12d 630 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing) ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing))) |
10 | 4 | islvec 20281 | . 2 ⊢ (𝑆 ∈ LVec ↔ (𝑆 ∈ LMod ∧ (Scalar‘𝑆) ∈ DivRing)) |
11 | 5 | islvec 20281 | . 2 ⊢ (𝑇 ∈ LVec ↔ (𝑇 ∈ LMod ∧ (Scalar‘𝑇) ∈ DivRing)) |
12 | 9, 10, 11 | 3bitr4g 313 | 1 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Scalarcsca 16891 DivRingcdr 19906 LModclmod 20038 LMHom clmhm 20196 LVecclvec 20279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-lmhm 20199 df-lvec 20280 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |