| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecprop2d | Structured version Visualization version GIF version | ||
| Description: If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 21106 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| Ref | Expression |
|---|---|
| lvecprop2d.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| lvecprop2d.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| lvecprop2d.f | ⊢ 𝐹 = (Scalar‘𝐾) |
| lvecprop2d.g | ⊢ 𝐺 = (Scalar‘𝐿) |
| lvecprop2d.p1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
| lvecprop2d.p2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
| lvecprop2d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| lvecprop2d.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| lvecprop2d.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦)) |
| lvecprop2d.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| Ref | Expression |
|---|---|
| lvecprop2d | ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecprop2d.b1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 2 | lvecprop2d.b2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 3 | lvecprop2d.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝐾) | |
| 4 | lvecprop2d.g | . . . 4 ⊢ 𝐺 = (Scalar‘𝐿) | |
| 5 | lvecprop2d.p1 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
| 6 | lvecprop2d.p2 | . . . 4 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
| 7 | lvecprop2d.1 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 8 | lvecprop2d.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) | |
| 9 | lvecprop2d.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦)) | |
| 10 | lvecprop2d.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | lmodprop2d 20859 | . . 3 ⊢ (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod)) |
| 12 | 5, 6, 8, 9 | drngpropd 20686 | . . 3 ⊢ (𝜑 → (𝐹 ∈ DivRing ↔ 𝐺 ∈ DivRing)) |
| 13 | 11, 12 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing))) |
| 14 | 3 | islvec 21040 | . 2 ⊢ (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing)) |
| 15 | 4 | islvec 21040 | . 2 ⊢ (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing)) |
| 16 | 13, 14, 15 | 3bitr4g 314 | 1 ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 DivRingcdr 20646 LModclmod 20795 LVecclvec 21038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-mgp 20061 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-drng 20648 df-lmod 20797 df-lvec 21039 |
| This theorem is referenced by: hlhillvec 42070 |
| Copyright terms: Public domain | W3C validator |