MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecprop2d Structured version   Visualization version   GIF version

Theorem lvecprop2d 20343
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 20344 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lvecprop2d.b1 (𝜑𝐵 = (Base‘𝐾))
lvecprop2d.b2 (𝜑𝐵 = (Base‘𝐿))
lvecprop2d.f 𝐹 = (Scalar‘𝐾)
lvecprop2d.g 𝐺 = (Scalar‘𝐿)
lvecprop2d.p1 (𝜑𝑃 = (Base‘𝐹))
lvecprop2d.p2 (𝜑𝑃 = (Base‘𝐺))
lvecprop2d.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lvecprop2d.2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
lvecprop2d.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
lvecprop2d.4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lvecprop2d (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦

Proof of Theorem lvecprop2d
StepHypRef Expression
1 lvecprop2d.b1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 lvecprop2d.b2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 lvecprop2d.f . . . 4 𝐹 = (Scalar‘𝐾)
4 lvecprop2d.g . . . 4 𝐺 = (Scalar‘𝐿)
5 lvecprop2d.p1 . . . 4 (𝜑𝑃 = (Base‘𝐹))
6 lvecprop2d.p2 . . . 4 (𝜑𝑃 = (Base‘𝐺))
7 lvecprop2d.1 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
8 lvecprop2d.2 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
9 lvecprop2d.3 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
10 lvecprop2d.4 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10lmodprop2d 20100 . . 3 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
125, 6, 8, 9drngpropd 19933 . . 3 (𝜑 → (𝐹 ∈ DivRing ↔ 𝐺 ∈ DivRing))
1311, 12anbi12d 630 . 2 (𝜑 → ((𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing)))
143islvec 20281 . 2 (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing))
154islvec 20281 . 2 (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing))
1613, 14, 153bitr4g 313 1 (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-drng 19908  df-lmod 20040  df-lvec 20280
This theorem is referenced by:  hlhillvec  39896
  Copyright terms: Public domain W3C validator