MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecprop2d Structured version   Visualization version   GIF version

Theorem lvecprop2d 21105
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 21106 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.)
Hypotheses
Ref Expression
lvecprop2d.b1 (𝜑𝐵 = (Base‘𝐾))
lvecprop2d.b2 (𝜑𝐵 = (Base‘𝐿))
lvecprop2d.f 𝐹 = (Scalar‘𝐾)
lvecprop2d.g 𝐺 = (Scalar‘𝐿)
lvecprop2d.p1 (𝜑𝑃 = (Base‘𝐹))
lvecprop2d.p2 (𝜑𝑃 = (Base‘𝐺))
lvecprop2d.1 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lvecprop2d.2 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
lvecprop2d.3 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
lvecprop2d.4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
lvecprop2d (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦

Proof of Theorem lvecprop2d
StepHypRef Expression
1 lvecprop2d.b1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 lvecprop2d.b2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 lvecprop2d.f . . . 4 𝐹 = (Scalar‘𝐾)
4 lvecprop2d.g . . . 4 𝐺 = (Scalar‘𝐿)
5 lvecprop2d.p1 . . . 4 (𝜑𝑃 = (Base‘𝐹))
6 lvecprop2d.p2 . . . 4 (𝜑𝑃 = (Base‘𝐺))
7 lvecprop2d.1 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
8 lvecprop2d.2 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
9 lvecprop2d.3 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(.r𝐹)𝑦) = (𝑥(.r𝐺)𝑦))
10 lvecprop2d.4 . . . 4 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10lmodprop2d 20859 . . 3 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
125, 6, 8, 9drngpropd 20686 . . 3 (𝜑 → (𝐹 ∈ DivRing ↔ 𝐺 ∈ DivRing))
1311, 12anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing) ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing)))
143islvec 21040 . 2 (𝐾 ∈ LVec ↔ (𝐾 ∈ LMod ∧ 𝐹 ∈ DivRing))
154islvec 21040 . 2 (𝐿 ∈ LVec ↔ (𝐿 ∈ LMod ∧ 𝐺 ∈ DivRing))
1613, 14, 153bitr4g 314 1 (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  Scalarcsca 17166   ·𝑠 cvsca 17167  DivRingcdr 20646  LModclmod 20795  LVecclvec 21038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-mgp 20061  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-drng 20648  df-lmod 20797  df-lvec 21039
This theorem is referenced by:  hlhillvec  42070
  Copyright terms: Public domain W3C validator