| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallvec | Structured version Visualization version GIF version | ||
| Description: The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr 20307; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lduallvec.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lduallvec.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| Ref | Expression |
|---|---|
| lduallvec | ⊢ (𝜑 → 𝐷 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lduallvec.d | . . 3 ⊢ 𝐷 = (LDual‘𝑊) | |
| 2 | lduallvec.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | lveclmod 21078 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 5 | 1, 4 | lduallmod 39095 | . 2 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 6 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 7 | eqid 2734 | . . . 4 ⊢ (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊)) | |
| 8 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 9 | 6, 7, 1, 8, 2 | ldualsca 39074 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = (oppr‘(Scalar‘𝑊))) |
| 10 | 6 | lvecdrng 21077 | . . . . 5 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑊) ∈ DivRing) |
| 12 | 7 | opprdrng 20737 | . . . 4 ⊢ ((Scalar‘𝑊) ∈ DivRing ↔ (oppr‘(Scalar‘𝑊)) ∈ DivRing) |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝜑 → (oppr‘(Scalar‘𝑊)) ∈ DivRing) |
| 14 | 9, 13 | eqeltrd 2833 | . 2 ⊢ (𝜑 → (Scalar‘𝐷) ∈ DivRing) |
| 15 | 8 | islvec 21076 | . 2 ⊢ (𝐷 ∈ LVec ↔ (𝐷 ∈ LMod ∧ (Scalar‘𝐷) ∈ DivRing)) |
| 16 | 5, 14, 15 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐷 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6542 Scalarcsca 17280 opprcoppr 20306 DivRingcdr 20702 LModclmod 20831 LVecclvec 21074 LDualcld 39065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-tpos 8234 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 df-sbg 18930 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-ring 20205 df-oppr 20307 df-dvdsr 20330 df-unit 20331 df-drng 20704 df-lmod 20833 df-lvec 21075 df-lfl 39000 df-ldual 39066 |
| This theorem is referenced by: lkreqN 39112 lkrlspeqN 39113 lcdlvec 41534 |
| Copyright terms: Public domain | W3C validator |