| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lduallvec | Structured version Visualization version GIF version | ||
| Description: The dual of a left vector space is also a left vector space. Note that scalar multiplication is reversed by df-oppr 20284; otherwise, the dual would be a right vector space as is sometimes the case in the literature. (Contributed by NM, 22-Oct-2014.) |
| Ref | Expression |
|---|---|
| lduallvec.d | ⊢ 𝐷 = (LDual‘𝑊) |
| lduallvec.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| Ref | Expression |
|---|---|
| lduallvec | ⊢ (𝜑 → 𝐷 ∈ LVec) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lduallvec.d | . . 3 ⊢ 𝐷 = (LDual‘𝑊) | |
| 2 | lduallvec.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | lveclmod 21051 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 5 | 1, 4 | lduallmod 39100 | . 2 ⊢ (𝜑 → 𝐷 ∈ LMod) |
| 6 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 7 | eqid 2734 | . . . 4 ⊢ (oppr‘(Scalar‘𝑊)) = (oppr‘(Scalar‘𝑊)) | |
| 8 | eqid 2734 | . . . 4 ⊢ (Scalar‘𝐷) = (Scalar‘𝐷) | |
| 9 | 6, 7, 1, 8, 2 | ldualsca 39079 | . . 3 ⊢ (𝜑 → (Scalar‘𝐷) = (oppr‘(Scalar‘𝑊))) |
| 10 | 6 | lvecdrng 21050 | . . . . 5 ⊢ (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing) |
| 11 | 2, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑊) ∈ DivRing) |
| 12 | 7 | opprdrng 20711 | . . . 4 ⊢ ((Scalar‘𝑊) ∈ DivRing ↔ (oppr‘(Scalar‘𝑊)) ∈ DivRing) |
| 13 | 11, 12 | sylib 218 | . . 3 ⊢ (𝜑 → (oppr‘(Scalar‘𝑊)) ∈ DivRing) |
| 14 | 9, 13 | eqeltrd 2833 | . 2 ⊢ (𝜑 → (Scalar‘𝐷) ∈ DivRing) |
| 15 | 8 | islvec 21049 | . 2 ⊢ (𝐷 ∈ LVec ↔ (𝐷 ∈ LMod ∧ (Scalar‘𝐷) ∈ DivRing)) |
| 16 | 5, 14, 15 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐷 ∈ LVec) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6528 Scalarcsca 17261 opprcoppr 20283 DivRingcdr 20676 LModclmod 20804 LVecclvec 21047 LDualcld 39070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-of 7666 df-om 7857 df-1st 7983 df-2nd 7984 df-tpos 8220 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-4 12298 df-5 12299 df-6 12300 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-struct 17153 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 df-minusg 18907 df-sbg 18908 df-cmn 19750 df-abl 19751 df-mgp 20088 df-rng 20100 df-ur 20129 df-ring 20182 df-oppr 20284 df-dvdsr 20304 df-unit 20305 df-drng 20678 df-lmod 20806 df-lvec 21048 df-lfl 39005 df-ldual 39071 |
| This theorem is referenced by: lkreqN 39117 lkrlspeqN 39118 lcdlvec 41539 |
| Copyright terms: Public domain | W3C validator |