Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgrtrlem Structured version   Visualization version   GIF version

Theorem isomgrtrlem 45290
Description: Lemma for isomgrtr 45291. (Contributed by AV, 5-Dec-2022.)
Assertion
Ref Expression
isomgrtrlem (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → ∀𝑗 ∈ dom (iEdg‘𝐴)((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝑋   𝑓,𝑖,𝑗   𝑔,𝑖,𝑗,𝑘   𝑣,𝑗,𝑘   𝑤,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑤,𝑣,𝑓,𝑔,𝑘)   𝐵(𝑤,𝑣,𝑓,𝑔)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑖)   𝑋(𝑤,𝑣,𝑓,𝑔,𝑖,𝑘)

Proof of Theorem isomgrtrlem
StepHypRef Expression
1 imaco 6155 . . . 4 ((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗)))
21a1i 11 . . 3 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))))
3 fveq2 6774 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((iEdg‘𝐴)‘𝑖) = ((iEdg‘𝐴)‘𝑗))
43imaeq2d 5969 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑓 “ ((iEdg‘𝐴)‘𝑗)))
5 2fveq3 6779 . . . . . . . . . 10 (𝑖 = 𝑗 → ((iEdg‘𝐵)‘(𝑔𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑗)))
64, 5eqeq12d 2754 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
76rspccv 3558 . . . . . . . 8 (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
87adantl 482 . . . . . . 7 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
98ad2antlr 724 . . . . . 6 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
109imp 407 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗)))
1110imaeq2d 5969 . . . 4 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))) = (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))))
12 simplrr 775 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))
13 f1of 6716 . . . . . . . . 9 (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → 𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵))
14 ffvelrn 6959 . . . . . . . . . 10 ((𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑔𝑗) ∈ dom (iEdg‘𝐵))
1514ex 413 . . . . . . . . 9 (𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1613, 15syl 17 . . . . . . . 8 (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1716adantr 481 . . . . . . 7 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1817ad2antlr 724 . . . . . 6 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1918imp 407 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑔𝑗) ∈ dom (iEdg‘𝐵))
20 fveq2 6774 . . . . . . . 8 (𝑘 = (𝑔𝑗) → ((iEdg‘𝐵)‘𝑘) = ((iEdg‘𝐵)‘(𝑔𝑗)))
2120imaeq2d 5969 . . . . . . 7 (𝑘 = (𝑔𝑗) → (𝑣 “ ((iEdg‘𝐵)‘𝑘)) = (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))))
22 2fveq3 6779 . . . . . . 7 (𝑘 = (𝑔𝑗) → ((iEdg‘𝐶)‘(𝑤𝑘)) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))))
2321, 22eqeq12d 2754 . . . . . 6 (𝑘 = (𝑔𝑗) → ((𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)) ↔ (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗)))))
2423rspccv 3558 . . . . 5 (∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)) → ((𝑔𝑗) ∈ dom (iEdg‘𝐵) → (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗)))))
2512, 19, 24sylc 65 . . . 4 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))))
2611, 25eqtrd 2778 . . 3 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))))
27 f1ofn 6717 . . . . . . . 8 (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → 𝑔 Fn dom (iEdg‘𝐴))
2827adantr 481 . . . . . . 7 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → 𝑔 Fn dom (iEdg‘𝐴))
2928ad2antlr 724 . . . . . 6 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → 𝑔 Fn dom (iEdg‘𝐴))
30 fvco2 6865 . . . . . 6 ((𝑔 Fn dom (iEdg‘𝐴) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑤𝑔)‘𝑗) = (𝑤‘(𝑔𝑗)))
3129, 30sylan 580 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑤𝑔)‘𝑗) = (𝑤‘(𝑔𝑗)))
3231eqcomd 2744 . . . 4 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑤‘(𝑔𝑗)) = ((𝑤𝑔)‘𝑗))
3332fveq2d 6778 . . 3 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
342, 26, 333eqtrd 2782 . 2 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
3534ralrimiva 3103 1 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → ∀𝑗 ∈ dom (iEdg‘𝐴)((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  dom cdm 5589  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-f1o 6440  df-fv 6441
This theorem is referenced by:  isomgrtr  45291
  Copyright terms: Public domain W3C validator