Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomgrtrlem Structured version   Visualization version   GIF version

Theorem isomgrtrlem 46496
Description: Lemma for isomgrtr 46497. (Contributed by AV, 5-Dec-2022.)
Assertion
Ref Expression
isomgrtrlem (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → ∀𝑗 ∈ dom (iEdg‘𝐴)((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝐵,𝑖,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝑋   𝑓,𝑖,𝑗   𝑔,𝑖,𝑗,𝑘   𝑣,𝑗,𝑘   𝑤,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑤,𝑣,𝑓,𝑔,𝑘)   𝐵(𝑤,𝑣,𝑓,𝑔)   𝐶(𝑤,𝑣,𝑓,𝑔,𝑖)   𝑋(𝑤,𝑣,𝑓,𝑔,𝑖,𝑘)

Proof of Theorem isomgrtrlem
StepHypRef Expression
1 imaco 6250 . . . 4 ((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗)))
21a1i 11 . . 3 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))))
3 fveq2 6891 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((iEdg‘𝐴)‘𝑖) = ((iEdg‘𝐴)‘𝑗))
43imaeq2d 6059 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑓 “ ((iEdg‘𝐴)‘𝑗)))
5 2fveq3 6896 . . . . . . . . . 10 (𝑖 = 𝑗 → ((iEdg‘𝐵)‘(𝑔𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑗)))
64, 5eqeq12d 2748 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
76rspccv 3609 . . . . . . . 8 (∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
87adantl 482 . . . . . . 7 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
98ad2antlr 725 . . . . . 6 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗))))
109imp 407 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔𝑗)))
1110imaeq2d 6059 . . . 4 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))) = (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))))
12 simplrr 776 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))
13 f1of 6833 . . . . . . . . 9 (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → 𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵))
14 ffvelcdm 7083 . . . . . . . . . 10 ((𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑔𝑗) ∈ dom (iEdg‘𝐵))
1514ex 413 . . . . . . . . 9 (𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1613, 15syl 17 . . . . . . . 8 (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1716adantr 481 . . . . . . 7 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1817ad2antlr 725 . . . . . 6 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔𝑗) ∈ dom (iEdg‘𝐵)))
1918imp 407 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑔𝑗) ∈ dom (iEdg‘𝐵))
20 fveq2 6891 . . . . . . . 8 (𝑘 = (𝑔𝑗) → ((iEdg‘𝐵)‘𝑘) = ((iEdg‘𝐵)‘(𝑔𝑗)))
2120imaeq2d 6059 . . . . . . 7 (𝑘 = (𝑔𝑗) → (𝑣 “ ((iEdg‘𝐵)‘𝑘)) = (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))))
22 2fveq3 6896 . . . . . . 7 (𝑘 = (𝑔𝑗) → ((iEdg‘𝐶)‘(𝑤𝑘)) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))))
2321, 22eqeq12d 2748 . . . . . 6 (𝑘 = (𝑔𝑗) → ((𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)) ↔ (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗)))))
2423rspccv 3609 . . . . 5 (∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)) → ((𝑔𝑗) ∈ dom (iEdg‘𝐵) → (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗)))))
2512, 19, 24sylc 65 . . . 4 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ ((iEdg‘𝐵)‘(𝑔𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))))
2611, 25eqtrd 2772 . . 3 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))))
27 f1ofn 6834 . . . . . . . 8 (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) → 𝑔 Fn dom (iEdg‘𝐴))
2827adantr 481 . . . . . . 7 ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖))) → 𝑔 Fn dom (iEdg‘𝐴))
2928ad2antlr 725 . . . . . 6 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → 𝑔 Fn dom (iEdg‘𝐴))
30 fvco2 6988 . . . . . 6 ((𝑔 Fn dom (iEdg‘𝐴) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑤𝑔)‘𝑗) = (𝑤‘(𝑔𝑗)))
3129, 30sylan 580 . . . . 5 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑤𝑔)‘𝑗) = (𝑤‘(𝑔𝑗)))
3231eqcomd 2738 . . . 4 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑤‘(𝑔𝑗)) = ((𝑤𝑔)‘𝑗))
3332fveq2d 6895 . . 3 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐶)‘(𝑤‘(𝑔𝑗))) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
342, 26, 333eqtrd 2776 . 2 ((((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
3534ralrimiva 3146 1 (((((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph ∧ 𝐶𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom (iEdg‘𝐵) ∧ ∀𝑖 ∈ dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom (iEdg‘𝐶) ∧ ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤𝑘)))) → ∀𝑗 ∈ dom (iEdg‘𝐴)((𝑣𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤𝑔)‘𝑗)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3061  dom cdm 5676  cima 5679  ccom 5680   Fn wfn 6538  wf 6539  1-1-ontowf1o 6542  cfv 6543  Vtxcvtx 28253  iEdgciedg 28254  UHGraphcuhgr 28313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-f1o 6550  df-fv 6551
This theorem is referenced by:  isomgrtr  46497
  Copyright terms: Public domain W3C validator