Proof of Theorem isomgrtrlem
Step | Hyp | Ref
| Expression |
1 | | imaco 6155 |
. . . 4
⊢ ((𝑣 ∘ 𝑓) “ ((iEdg‘𝐴)‘𝑗)) = (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
2 | 1 | a1i 11 |
. . 3
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑣 ∘ 𝑓) “ ((iEdg‘𝐴)‘𝑗)) = (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗)))) |
3 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐴)‘𝑖) = ((iEdg‘𝐴)‘𝑗)) |
4 | 3 | imaeq2d 5969 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑓 “ ((iEdg‘𝐴)‘𝑖)) = (𝑓 “ ((iEdg‘𝐴)‘𝑗))) |
5 | | 2fveq3 6779 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((iEdg‘𝐵)‘(𝑔‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑗))) |
6 | 4, 5 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)) ↔ (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔‘𝑗)))) |
7 | 6 | rspccv 3558 |
. . . . . . . 8
⊢
(∀𝑖 ∈
dom (iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔‘𝑗)))) |
8 | 7 | adantl 482 |
. . . . . . 7
⊢ ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔‘𝑗)))) |
9 | 8 | ad2antlr 724 |
. . . . . 6
⊢
(((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔‘𝑗)))) |
10 | 9 | imp 407 |
. . . . 5
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑓 “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐵)‘(𝑔‘𝑗))) |
11 | 10 | imaeq2d 5969 |
. . . 4
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))) = (𝑣 “ ((iEdg‘𝐵)‘(𝑔‘𝑗)))) |
12 | | simplrr 775 |
. . . . 5
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ∀𝑘 ∈ dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘))) |
13 | | f1of 6716 |
. . . . . . . . 9
⊢ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) → 𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵)) |
14 | | ffvelrn 6959 |
. . . . . . . . . 10
⊢ ((𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑔‘𝑗) ∈ dom (iEdg‘𝐵)) |
15 | 14 | ex 413 |
. . . . . . . . 9
⊢ (𝑔:dom (iEdg‘𝐴)⟶dom (iEdg‘𝐵) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔‘𝑗) ∈ dom (iEdg‘𝐵))) |
16 | 13, 15 | syl 17 |
. . . . . . . 8
⊢ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) →
(𝑗 ∈ dom
(iEdg‘𝐴) →
(𝑔‘𝑗) ∈ dom (iEdg‘𝐵))) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔‘𝑗) ∈ dom (iEdg‘𝐵))) |
18 | 17 | ad2antlr 724 |
. . . . . 6
⊢
(((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) → (𝑗 ∈ dom (iEdg‘𝐴) → (𝑔‘𝑗) ∈ dom (iEdg‘𝐵))) |
19 | 18 | imp 407 |
. . . . 5
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑔‘𝑗) ∈ dom (iEdg‘𝐵)) |
20 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑘 = (𝑔‘𝑗) → ((iEdg‘𝐵)‘𝑘) = ((iEdg‘𝐵)‘(𝑔‘𝑗))) |
21 | 20 | imaeq2d 5969 |
. . . . . . 7
⊢ (𝑘 = (𝑔‘𝑗) → (𝑣 “ ((iEdg‘𝐵)‘𝑘)) = (𝑣 “ ((iEdg‘𝐵)‘(𝑔‘𝑗)))) |
22 | | 2fveq3 6779 |
. . . . . . 7
⊢ (𝑘 = (𝑔‘𝑗) → ((iEdg‘𝐶)‘(𝑤‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘(𝑔‘𝑗)))) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑘 = (𝑔‘𝑗) → ((𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)) ↔ (𝑣 “ ((iEdg‘𝐵)‘(𝑔‘𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔‘𝑗))))) |
24 | 23 | rspccv 3558 |
. . . . 5
⊢
(∀𝑘 ∈
dom (iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)) → ((𝑔‘𝑗) ∈ dom (iEdg‘𝐵) → (𝑣 “ ((iEdg‘𝐵)‘(𝑔‘𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔‘𝑗))))) |
25 | 12, 19, 24 | sylc 65 |
. . . 4
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ ((iEdg‘𝐵)‘(𝑔‘𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔‘𝑗)))) |
26 | 11, 25 | eqtrd 2778 |
. . 3
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑣 “ (𝑓 “ ((iEdg‘𝐴)‘𝑗))) = ((iEdg‘𝐶)‘(𝑤‘(𝑔‘𝑗)))) |
27 | | f1ofn 6717 |
. . . . . . . 8
⊢ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) → 𝑔 Fn dom (iEdg‘𝐴)) |
28 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖))) → 𝑔 Fn dom (iEdg‘𝐴)) |
29 | 28 | ad2antlr 724 |
. . . . . 6
⊢
(((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) → 𝑔 Fn dom (iEdg‘𝐴)) |
30 | | fvco2 6865 |
. . . . . 6
⊢ ((𝑔 Fn dom (iEdg‘𝐴) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑤 ∘ 𝑔)‘𝑗) = (𝑤‘(𝑔‘𝑗))) |
31 | 29, 30 | sylan 580 |
. . . . 5
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑤 ∘ 𝑔)‘𝑗) = (𝑤‘(𝑔‘𝑗))) |
32 | 31 | eqcomd 2744 |
. . . 4
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → (𝑤‘(𝑔‘𝑗)) = ((𝑤 ∘ 𝑔)‘𝑗)) |
33 | 32 | fveq2d 6778 |
. . 3
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((iEdg‘𝐶)‘(𝑤‘(𝑔‘𝑗))) = ((iEdg‘𝐶)‘((𝑤 ∘ 𝑔)‘𝑗))) |
34 | 2, 26, 33 | 3eqtrd 2782 |
. 2
⊢
((((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) ∧ 𝑗 ∈ dom (iEdg‘𝐴)) → ((𝑣 ∘ 𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤 ∘ 𝑔)‘𝑗))) |
35 | 34 | ralrimiva 3103 |
1
⊢
(((((𝐴 ∈
UHGraph ∧ 𝐵 ∈
UHGraph ∧ 𝐶 ∈
𝑋) ∧ 𝑓:(Vtx‘𝐴)–1-1-onto→(Vtx‘𝐵) ∧ 𝑣:(Vtx‘𝐵)–1-1-onto→(Vtx‘𝐶)) ∧ (𝑔:dom (iEdg‘𝐴)–1-1-onto→dom
(iEdg‘𝐵) ∧
∀𝑖 ∈ dom
(iEdg‘𝐴)(𝑓 “ ((iEdg‘𝐴)‘𝑖)) = ((iEdg‘𝐵)‘(𝑔‘𝑖)))) ∧ (𝑤:dom (iEdg‘𝐵)–1-1-onto→dom
(iEdg‘𝐶) ∧
∀𝑘 ∈ dom
(iEdg‘𝐵)(𝑣 “ ((iEdg‘𝐵)‘𝑘)) = ((iEdg‘𝐶)‘(𝑤‘𝑘)))) → ∀𝑗 ∈ dom (iEdg‘𝐴)((𝑣 ∘ 𝑓) “ ((iEdg‘𝐴)‘𝑗)) = ((iEdg‘𝐶)‘((𝑤 ∘ 𝑔)‘𝑗))) |