| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foelrn | Structured version Visualization version GIF version | ||
| Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) |
| Ref | Expression |
|---|---|
| foelrn | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3 7122 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 3 | eqeq1 2741 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 = (𝐹‘𝑥) ↔ 𝐶 = (𝐹‘𝑥))) | |
| 4 | 3 | rexbidv 3179 | . . 3 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥))) |
| 5 | 4 | rspccva 3621 | . 2 ⊢ ((∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| 6 | 2, 5 | sylan 580 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fo 6567 df-fv 6569 |
| This theorem is referenced by: foco2 7129 fofinf1o 9372 fodomacn 10096 iunfictbso 10154 cff1 10298 cofsmo 10309 axcclem 10497 konigthlem 10608 tskuni 10823 fulli 17960 efgredlemc 19763 efgrelexlemb 19768 efgredeu 19770 ghmcyg 19914 znfld 21579 znrrg 21584 cygznlem3 21588 ovoliunnul 25542 lgsdchr 27399 foresf1o 32523 iunrdx 32576 znfermltl 33394 crngohomfo 38013 fourierdlem20 46142 fourierdlem52 46173 fourierdlem63 46184 fourierdlem64 46185 fourierdlem65 46186 isuspgrimlem 47874 grimedg 47903 |
| Copyright terms: Public domain | W3C validator |