| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foelrn | Structured version Visualization version GIF version | ||
| Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) |
| Ref | Expression |
|---|---|
| foelrn | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3 7089 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 3 | eqeq1 2738 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 = (𝐹‘𝑥) ↔ 𝐶 = (𝐹‘𝑥))) | |
| 4 | 3 | rexbidv 3162 | . . 3 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥))) |
| 5 | 4 | rspccva 3598 | . 2 ⊢ ((∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| 6 | 2, 5 | sylan 580 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⟶wf 6524 –onto→wfo 6526 ‘cfv 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-fo 6534 df-fv 6536 |
| This theorem is referenced by: foco2 7096 fofinf1o 9339 fodomacn 10063 iunfictbso 10121 cff1 10265 cofsmo 10276 axcclem 10464 konigthlem 10575 tskuni 10790 fulli 17915 efgredlemc 19713 efgrelexlemb 19718 efgredeu 19720 ghmcyg 19864 znfld 21508 znrrg 21513 cygznlem3 21517 ovoliunnul 25447 lgsdchr 27304 foresf1o 32419 iunrdx 32478 znfermltl 33318 crngohomfo 37959 fourierdlem20 46092 fourierdlem52 46123 fourierdlem63 46134 fourierdlem64 46135 fourierdlem65 46136 isuspgrimlem 47827 grimedg 47856 |
| Copyright terms: Public domain | W3C validator |