MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foelrn Structured version   Visualization version   GIF version

Theorem foelrn 6627
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
Assertion
Ref Expression
foelrn ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem foelrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffo3 6623 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
21simprbi 492 . 2 (𝐹:𝐴onto𝐵 → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
3 eqeq1 2829 . . . 4 (𝑦 = 𝐶 → (𝑦 = (𝐹𝑥) ↔ 𝐶 = (𝐹𝑥)))
43rexbidv 3262 . . 3 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝐶 = (𝐹𝑥)))
54rspccva 3525 . 2 ((∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥) ∧ 𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
62, 5sylan 575 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wral 3117  wrex 3118  wf 6119  ontowfo 6121  cfv 6123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fo 6129  df-fv 6131
This theorem is referenced by:  foco2  6628  fofinf1o  8510  fodomacn  9192  iunfictbso  9250  cff1  9395  cofsmo  9406  axcclem  9594  konigthlem  9705  tskuni  9920  fulli  16925  efgredlemc  18510  efgrelexlemb  18516  efgredeu  18518  ghmcyg  18650  znfld  20268  znrrg  20273  cygznlem3  20277  ovoliunnul  23673  lgsdchr  25493  foresf1o  29880  iunrdx  29918  crngohomfo  34340  fourierdlem20  41131  fourierdlem52  41162  fourierdlem63  41173  fourierdlem64  41174  fourierdlem65  41175  isomuspgrlem2d  42542
  Copyright terms: Public domain W3C validator