| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > foelrn | Structured version Visualization version GIF version | ||
| Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) |
| Ref | Expression |
|---|---|
| foelrn | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3 7036 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 3 | eqeq1 2733 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 = (𝐹‘𝑥) ↔ 𝐶 = (𝐹‘𝑥))) | |
| 4 | 3 | rexbidv 3153 | . . 3 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥))) |
| 5 | 4 | rspccva 3576 | . 2 ⊢ ((∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| 6 | 2, 5 | sylan 580 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-fv 6490 |
| This theorem is referenced by: foco2 7043 fofinf1o 9222 fodomacn 9950 iunfictbso 10008 cff1 10152 cofsmo 10163 axcclem 10351 konigthlem 10462 tskuni 10677 fulli 17822 efgredlemc 19624 efgrelexlemb 19629 efgredeu 19631 ghmcyg 19775 znfld 21467 znrrg 21472 cygznlem3 21476 ovoliunnul 25406 lgsdchr 27264 foresf1o 32448 iunrdx 32507 znfermltl 33304 crngohomfo 37996 fourierdlem20 46118 fourierdlem52 46149 fourierdlem63 46160 fourierdlem64 46161 fourierdlem65 46162 isuspgrimlem 47889 grimedg 47929 uptrlem1 49205 uptr2 49216 |
| Copyright terms: Public domain | W3C validator |