MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foelrn Structured version   Visualization version   GIF version

Theorem foelrn 7127
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
Assertion
Ref Expression
foelrn ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem foelrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffo3 7122 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
21simprbi 496 . 2 (𝐹:𝐴onto𝐵 → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
3 eqeq1 2739 . . . 4 (𝑦 = 𝐶 → (𝑦 = (𝐹𝑥) ↔ 𝐶 = (𝐹𝑥)))
43rexbidv 3177 . . 3 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝐶 = (𝐹𝑥)))
54rspccva 3621 . 2 ((∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥) ∧ 𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
62, 5sylan 580 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wf 6559  ontowfo 6561  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571
This theorem is referenced by:  foco2  7129  fofinf1o  9370  fodomacn  10094  iunfictbso  10152  cff1  10296  cofsmo  10307  axcclem  10495  konigthlem  10606  tskuni  10821  fulli  17967  efgredlemc  19778  efgrelexlemb  19783  efgredeu  19785  ghmcyg  19929  znfld  21597  znrrg  21602  cygznlem3  21606  ovoliunnul  25556  lgsdchr  27414  foresf1o  32532  iunrdx  32584  znfermltl  33374  crngohomfo  37993  fourierdlem20  46083  fourierdlem52  46114  fourierdlem63  46125  fourierdlem64  46126  fourierdlem65  46127  isuspgrimlem  47812  grimedg  47841
  Copyright terms: Public domain W3C validator