![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > foelrn | Structured version Visualization version GIF version |
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) |
Ref | Expression |
---|---|
foelrn | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffo3 7136 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
3 | eqeq1 2744 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝑦 = (𝐹‘𝑥) ↔ 𝐶 = (𝐹‘𝑥))) | |
4 | 3 | rexbidv 3185 | . . 3 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ↔ ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥))) |
5 | 4 | rspccva 3634 | . 2 ⊢ ((∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥) ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
6 | 2, 5 | sylan 579 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 |
This theorem is referenced by: foco2 7143 fofinf1o 9400 fodomacn 10125 iunfictbso 10183 cff1 10327 cofsmo 10338 axcclem 10526 konigthlem 10637 tskuni 10852 fulli 17980 efgredlemc 19787 efgrelexlemb 19792 efgredeu 19794 ghmcyg 19938 znfld 21602 znrrg 21607 cygznlem3 21611 ovoliunnul 25561 lgsdchr 27417 foresf1o 32532 iunrdx 32586 znfermltl 33359 crngohomfo 37966 fourierdlem20 46048 fourierdlem52 46079 fourierdlem63 46090 fourierdlem64 46091 fourierdlem65 46092 isuspgrimlem 47758 grimedg 47787 |
Copyright terms: Public domain | W3C validator |