MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foelrn Structured version   Visualization version   GIF version

Theorem foelrn 7079
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.)
Assertion
Ref Expression
foelrn ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem foelrn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dffo3 7074 . . 3 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥)))
21simprbi 496 . 2 (𝐹:𝐴onto𝐵 → ∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥))
3 eqeq1 2733 . . . 4 (𝑦 = 𝐶 → (𝑦 = (𝐹𝑥) ↔ 𝐶 = (𝐹𝑥)))
43rexbidv 3157 . . 3 (𝑦 = 𝐶 → (∃𝑥𝐴 𝑦 = (𝐹𝑥) ↔ ∃𝑥𝐴 𝐶 = (𝐹𝑥)))
54rspccva 3587 . 2 ((∀𝑦𝐵𝑥𝐴 𝑦 = (𝐹𝑥) ∧ 𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
62, 5sylan 580 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wf 6507  ontowfo 6509  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519
This theorem is referenced by:  foco2  7081  fofinf1o  9283  fodomacn  10009  iunfictbso  10067  cff1  10211  cofsmo  10222  axcclem  10410  konigthlem  10521  tskuni  10736  fulli  17877  efgredlemc  19675  efgrelexlemb  19680  efgredeu  19682  ghmcyg  19826  znfld  21470  znrrg  21475  cygznlem3  21479  ovoliunnul  25408  lgsdchr  27266  foresf1o  32433  iunrdx  32492  znfermltl  33337  crngohomfo  38000  fourierdlem20  46125  fourierdlem52  46156  fourierdlem63  46167  fourierdlem64  46168  fourierdlem65  46169  isuspgrimlem  47895  grimedg  47935  uptrlem1  49199  uptr2  49210
  Copyright terms: Public domain W3C validator