Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvntr Structured version   Visualization version   GIF version

Theorem lcvntr 38965
Description: The covers relation is not transitive. (cvntr 32205 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvntr.p (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvntr (𝜑 → ¬ 𝑅𝐶𝑈)

Proof of Theorem lcvntr
StepHypRef Expression
1 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
4 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
5 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
6 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
71, 2, 3, 4, 5, 6lcvpss 38963 . . 3 (𝜑𝑅𝑇)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvntr.p . . . 4 (𝜑𝑇𝐶𝑈)
101, 2, 3, 5, 8, 9lcvpss 38963 . . 3 (𝜑𝑇𝑈)
117, 10jca 511 . 2 (𝜑 → (𝑅𝑇𝑇𝑈))
123adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑊𝑋)
134adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑅𝑆)
148adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑈𝑆)
155adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑇𝑆)
16 simpr 484 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑅𝐶𝑈)
171, 2, 12, 13, 14, 15, 16lcvnbtwn 38964 . . 3 ((𝜑𝑅𝐶𝑈) → ¬ (𝑅𝑇𝑇𝑈))
1817ex 412 . 2 (𝜑 → (𝑅𝐶𝑈 → ¬ (𝑅𝑇𝑇𝑈)))
1911, 18mt2d 136 1 (𝜑 → ¬ 𝑅𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wpss 3925   class class class wbr 5116  cfv 6527  LSubSpclss 20873  L clcv 38957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-iota 6480  df-fun 6529  df-fv 6535  df-lcv 38958
This theorem is referenced by:  lsatcv0eq  38986
  Copyright terms: Public domain W3C validator