| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvntr | Structured version Visualization version GIF version | ||
| Description: The covers relation is not transitive. (cvntr 32228 analog.) (Contributed by NM, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
| lcvntr.p | ⊢ (𝜑 → 𝑇𝐶𝑈) |
| Ref | Expression |
|---|---|
| lcvntr | ⊢ (𝜑 → ¬ 𝑅𝐶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvnbtwn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lcvnbtwn.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 3 | lcvnbtwn.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 4 | lcvnbtwn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
| 5 | lcvnbtwn.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 6 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | lcvpss 39024 | . . 3 ⊢ (𝜑 → 𝑅 ⊊ 𝑇) |
| 8 | lcvnbtwn.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 9 | lcvntr.p | . . . 4 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
| 10 | 1, 2, 3, 5, 8, 9 | lcvpss 39024 | . . 3 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
| 11 | 7, 10 | jca 511 | . 2 ⊢ (𝜑 → (𝑅 ⊊ 𝑇 ∧ 𝑇 ⊊ 𝑈)) |
| 12 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑊 ∈ 𝑋) |
| 13 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑅 ∈ 𝑆) |
| 14 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑈 ∈ 𝑆) |
| 15 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑇 ∈ 𝑆) |
| 16 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑅𝐶𝑈) | |
| 17 | 1, 2, 12, 13, 14, 15, 16 | lcvnbtwn 39025 | . . 3 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → ¬ (𝑅 ⊊ 𝑇 ∧ 𝑇 ⊊ 𝑈)) |
| 18 | 17 | ex 412 | . 2 ⊢ (𝜑 → (𝑅𝐶𝑈 → ¬ (𝑅 ⊊ 𝑇 ∧ 𝑇 ⊊ 𝑈))) |
| 19 | 11, 18 | mt2d 136 | 1 ⊢ (𝜑 → ¬ 𝑅𝐶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊊ wpss 3918 class class class wbr 5110 ‘cfv 6514 LSubSpclss 20844 ⋖L clcv 39018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-lcv 39019 |
| This theorem is referenced by: lsatcv0eq 39047 |
| Copyright terms: Public domain | W3C validator |