Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvntr Structured version   Visualization version   GIF version

Theorem lcvntr 39135
Description: The covers relation is not transitive. (cvntr 32272 analog.) (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
lcvntr.p (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvntr (𝜑 → ¬ 𝑅𝐶𝑈)

Proof of Theorem lcvntr
StepHypRef Expression
1 lcvnbtwn.s . . . 4 𝑆 = (LSubSp‘𝑊)
2 lcvnbtwn.c . . . 4 𝐶 = ( ⋖L𝑊)
3 lcvnbtwn.w . . . 4 (𝜑𝑊𝑋)
4 lcvnbtwn.r . . . 4 (𝜑𝑅𝑆)
5 lcvnbtwn.t . . . 4 (𝜑𝑇𝑆)
6 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
71, 2, 3, 4, 5, 6lcvpss 39133 . . 3 (𝜑𝑅𝑇)
8 lcvnbtwn.u . . . 4 (𝜑𝑈𝑆)
9 lcvntr.p . . . 4 (𝜑𝑇𝐶𝑈)
101, 2, 3, 5, 8, 9lcvpss 39133 . . 3 (𝜑𝑇𝑈)
117, 10jca 511 . 2 (𝜑 → (𝑅𝑇𝑇𝑈))
123adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑊𝑋)
134adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑅𝑆)
148adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑈𝑆)
155adantr 480 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑇𝑆)
16 simpr 484 . . . 4 ((𝜑𝑅𝐶𝑈) → 𝑅𝐶𝑈)
171, 2, 12, 13, 14, 15, 16lcvnbtwn 39134 . . 3 ((𝜑𝑅𝐶𝑈) → ¬ (𝑅𝑇𝑇𝑈))
1817ex 412 . 2 (𝜑 → (𝑅𝐶𝑈 → ¬ (𝑅𝑇𝑇𝑈)))
1911, 18mt2d 136 1 (𝜑 → ¬ 𝑅𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wpss 3898   class class class wbr 5089  cfv 6481  LSubSpclss 20864  L clcv 39127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-lcv 39128
This theorem is referenced by:  lsatcv0eq  39156
  Copyright terms: Public domain W3C validator