Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvntr | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (cvntr 30855 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
lcvntr.p | ⊢ (𝜑 → 𝑇𝐶𝑈) |
Ref | Expression |
---|---|
lcvntr | ⊢ (𝜑 → ¬ 𝑅𝐶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvnbtwn.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lcvnbtwn.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
3 | lcvnbtwn.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
4 | lcvnbtwn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
5 | lcvnbtwn.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
6 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | lcvpss 37284 | . . 3 ⊢ (𝜑 → 𝑅 ⊊ 𝑇) |
8 | lcvnbtwn.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
9 | lcvntr.p | . . . 4 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
10 | 1, 2, 3, 5, 8, 9 | lcvpss 37284 | . . 3 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
11 | 7, 10 | jca 512 | . 2 ⊢ (𝜑 → (𝑅 ⊊ 𝑇 ∧ 𝑇 ⊊ 𝑈)) |
12 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑊 ∈ 𝑋) |
13 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑅 ∈ 𝑆) |
14 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑈 ∈ 𝑆) |
15 | 5 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑇 ∈ 𝑆) |
16 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → 𝑅𝐶𝑈) | |
17 | 1, 2, 12, 13, 14, 15, 16 | lcvnbtwn 37285 | . . 3 ⊢ ((𝜑 ∧ 𝑅𝐶𝑈) → ¬ (𝑅 ⊊ 𝑇 ∧ 𝑇 ⊊ 𝑈)) |
18 | 17 | ex 413 | . 2 ⊢ (𝜑 → (𝑅𝐶𝑈 → ¬ (𝑅 ⊊ 𝑇 ∧ 𝑇 ⊊ 𝑈))) |
19 | 11, 18 | mt2d 136 | 1 ⊢ (𝜑 → ¬ 𝑅𝐶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊊ wpss 3898 class class class wbr 5089 ‘cfv 6473 LSubSpclss 20291 ⋖L clcv 37278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6425 df-fun 6475 df-fv 6481 df-lcv 37279 |
This theorem is referenced by: lsatcv0eq 37307 |
Copyright terms: Public domain | W3C validator |