| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn | Structured version Visualization version GIF version | ||
| Description: The covers relation implies no in-betweenness. (cvnbtwn 32201 analog.) (Contributed by NM, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
| Ref | Expression |
|---|---|
| lcvnbtwn | ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
| 2 | lcvnbtwn.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lcvnbtwn.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 4 | lcvnbtwn.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 5 | lcvnbtwn.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
| 6 | lcvnbtwn.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 7 | 2, 3, 4, 5, 6 | lcvbr 38968 | . . . 4 ⊢ (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)))) |
| 8 | 1, 7 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇))) |
| 9 | 8 | simprd 495 | . 2 ⊢ (𝜑 → ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
| 10 | lcvnbtwn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 11 | psseq2 4064 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑅 ⊊ 𝑢 ↔ 𝑅 ⊊ 𝑈)) | |
| 12 | psseq1 4063 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢 ⊊ 𝑇 ↔ 𝑈 ⊊ 𝑇)) | |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑢 = 𝑈 → ((𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇))) |
| 14 | 13 | rspcev 3599 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
| 15 | 10, 14 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
| 16 | 9, 15 | mtand 815 | 1 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ⊊ wpss 3925 class class class wbr 5117 ‘cfv 6528 LSubSpclss 20875 ⋖L clcv 38965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-iota 6481 df-fun 6530 df-fv 6536 df-lcv 38966 |
| This theorem is referenced by: lcvntr 38973 lcvnbtwn2 38974 lcvnbtwn3 38975 |
| Copyright terms: Public domain | W3C validator |