![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (cvnbtwn 31534 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
Ref | Expression |
---|---|
lcvnbtwn | ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
2 | lcvnbtwn.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lcvnbtwn.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
4 | lcvnbtwn.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
5 | lcvnbtwn.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
6 | lcvnbtwn.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lcvbr 37886 | . . . 4 ⊢ (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)))) |
8 | 1, 7 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇))) |
9 | 8 | simprd 496 | . 2 ⊢ (𝜑 → ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
10 | lcvnbtwn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
11 | psseq2 4088 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑅 ⊊ 𝑢 ↔ 𝑅 ⊊ 𝑈)) | |
12 | psseq1 4087 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢 ⊊ 𝑇 ↔ 𝑈 ⊊ 𝑇)) | |
13 | 11, 12 | anbi12d 631 | . . . 4 ⊢ (𝑢 = 𝑈 → ((𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇))) |
14 | 13 | rspcev 3612 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
15 | 10, 14 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
16 | 9, 15 | mtand 814 | 1 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ⊊ wpss 3949 class class class wbr 5148 ‘cfv 6543 LSubSpclss 20541 ⋖L clcv 37883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-lcv 37884 |
This theorem is referenced by: lcvntr 37891 lcvnbtwn2 37892 lcvnbtwn3 37893 |
Copyright terms: Public domain | W3C validator |