| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn | Structured version Visualization version GIF version | ||
| Description: The covers relation implies no in-betweenness. (cvnbtwn 32266 analog.) (Contributed by NM, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
| lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
| lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
| lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
| Ref | Expression |
|---|---|
| lcvnbtwn | ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
| 2 | lcvnbtwn.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 3 | lcvnbtwn.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
| 4 | lcvnbtwn.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 5 | lcvnbtwn.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
| 6 | lcvnbtwn.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
| 7 | 2, 3, 4, 5, 6 | lcvbr 39130 | . . . 4 ⊢ (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)))) |
| 8 | 1, 7 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇))) |
| 9 | 8 | simprd 495 | . 2 ⊢ (𝜑 → ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
| 10 | lcvnbtwn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 11 | psseq2 4038 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑅 ⊊ 𝑢 ↔ 𝑅 ⊊ 𝑈)) | |
| 12 | psseq1 4037 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢 ⊊ 𝑇 ↔ 𝑈 ⊊ 𝑇)) | |
| 13 | 11, 12 | anbi12d 632 | . . . 4 ⊢ (𝑢 = 𝑈 → ((𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇))) |
| 14 | 13 | rspcev 3572 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
| 15 | 10, 14 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
| 16 | 9, 15 | mtand 815 | 1 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊊ wpss 3898 class class class wbr 5089 ‘cfv 6481 LSubSpclss 20864 ⋖L clcv 39127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-lcv 39128 |
| This theorem is referenced by: lcvntr 39135 lcvnbtwn2 39136 lcvnbtwn3 39137 |
| Copyright terms: Public domain | W3C validator |