Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn Structured version   Visualization version   GIF version

Theorem lcvnbtwn 38981
Description: The covers relation implies no in-betweenness. (cvnbtwn 32318 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
Assertion
Ref Expression
lcvnbtwn (𝜑 → ¬ (𝑅𝑈𝑈𝑇))

Proof of Theorem lcvnbtwn
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
2 lcvnbtwn.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lcvnbtwn.c . . . . 5 𝐶 = ( ⋖L𝑊)
4 lcvnbtwn.w . . . . 5 (𝜑𝑊𝑋)
5 lcvnbtwn.r . . . . 5 (𝜑𝑅𝑆)
6 lcvnbtwn.t . . . . 5 (𝜑𝑇𝑆)
72, 3, 4, 5, 6lcvbr 38977 . . . 4 (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))))
81, 7mpbid 232 . . 3 (𝜑 → (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇)))
98simprd 495 . 2 (𝜑 → ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
10 lcvnbtwn.u . . 3 (𝜑𝑈𝑆)
11 psseq2 4114 . . . . 5 (𝑢 = 𝑈 → (𝑅𝑢𝑅𝑈))
12 psseq1 4113 . . . . 5 (𝑢 = 𝑈 → (𝑢𝑇𝑈𝑇))
1311, 12anbi12d 631 . . . 4 (𝑢 = 𝑈 → ((𝑅𝑢𝑢𝑇) ↔ (𝑅𝑈𝑈𝑇)))
1413rspcev 3635 . . 3 ((𝑈𝑆 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
1510, 14sylan 579 . 2 ((𝜑 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
169, 15mtand 815 1 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  wpss 3977   class class class wbr 5166  cfv 6573  LSubSpclss 20952  L clcv 38974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-lcv 38975
This theorem is referenced by:  lcvntr  38982  lcvnbtwn2  38983  lcvnbtwn3  38984
  Copyright terms: Public domain W3C validator