Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn Structured version   Visualization version   GIF version

Theorem lcvnbtwn 39007
Description: The covers relation implies no in-betweenness. (cvnbtwn 32315 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
Assertion
Ref Expression
lcvnbtwn (𝜑 → ¬ (𝑅𝑈𝑈𝑇))

Proof of Theorem lcvnbtwn
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
2 lcvnbtwn.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lcvnbtwn.c . . . . 5 𝐶 = ( ⋖L𝑊)
4 lcvnbtwn.w . . . . 5 (𝜑𝑊𝑋)
5 lcvnbtwn.r . . . . 5 (𝜑𝑅𝑆)
6 lcvnbtwn.t . . . . 5 (𝜑𝑇𝑆)
72, 3, 4, 5, 6lcvbr 39003 . . . 4 (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))))
81, 7mpbid 232 . . 3 (𝜑 → (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇)))
98simprd 495 . 2 (𝜑 → ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
10 lcvnbtwn.u . . 3 (𝜑𝑈𝑆)
11 psseq2 4101 . . . . 5 (𝑢 = 𝑈 → (𝑅𝑢𝑅𝑈))
12 psseq1 4100 . . . . 5 (𝑢 = 𝑈 → (𝑢𝑇𝑈𝑇))
1311, 12anbi12d 632 . . . 4 (𝑢 = 𝑈 → ((𝑅𝑢𝑢𝑇) ↔ (𝑅𝑈𝑈𝑇)))
1413rspcev 3622 . . 3 ((𝑈𝑆 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
1510, 14sylan 580 . 2 ((𝜑 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
169, 15mtand 816 1 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wrex 3068  wpss 3964   class class class wbr 5148  cfv 6563  LSubSpclss 20947  L clcv 39000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-lcv 39001
This theorem is referenced by:  lcvntr  39008  lcvnbtwn2  39009  lcvnbtwn3  39010
  Copyright terms: Public domain W3C validator