Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvnbtwn Structured version   Visualization version   GIF version

Theorem lcvnbtwn 39008
Description: The covers relation implies no in-betweenness. (cvnbtwn 32230 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvnbtwn.s 𝑆 = (LSubSp‘𝑊)
lcvnbtwn.c 𝐶 = ( ⋖L𝑊)
lcvnbtwn.w (𝜑𝑊𝑋)
lcvnbtwn.r (𝜑𝑅𝑆)
lcvnbtwn.t (𝜑𝑇𝑆)
lcvnbtwn.u (𝜑𝑈𝑆)
lcvnbtwn.d (𝜑𝑅𝐶𝑇)
Assertion
Ref Expression
lcvnbtwn (𝜑 → ¬ (𝑅𝑈𝑈𝑇))

Proof of Theorem lcvnbtwn
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 lcvnbtwn.d . . . 4 (𝜑𝑅𝐶𝑇)
2 lcvnbtwn.s . . . . 5 𝑆 = (LSubSp‘𝑊)
3 lcvnbtwn.c . . . . 5 𝐶 = ( ⋖L𝑊)
4 lcvnbtwn.w . . . . 5 (𝜑𝑊𝑋)
5 lcvnbtwn.r . . . . 5 (𝜑𝑅𝑆)
6 lcvnbtwn.t . . . . 5 (𝜑𝑇𝑆)
72, 3, 4, 5, 6lcvbr 39004 . . . 4 (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))))
81, 7mpbid 232 . . 3 (𝜑 → (𝑅𝑇 ∧ ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇)))
98simprd 495 . 2 (𝜑 → ¬ ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
10 lcvnbtwn.u . . 3 (𝜑𝑈𝑆)
11 psseq2 4042 . . . . 5 (𝑢 = 𝑈 → (𝑅𝑢𝑅𝑈))
12 psseq1 4041 . . . . 5 (𝑢 = 𝑈 → (𝑢𝑇𝑈𝑇))
1311, 12anbi12d 632 . . . 4 (𝑢 = 𝑈 → ((𝑅𝑢𝑢𝑇) ↔ (𝑅𝑈𝑈𝑇)))
1413rspcev 3577 . . 3 ((𝑈𝑆 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
1510, 14sylan 580 . 2 ((𝜑 ∧ (𝑅𝑈𝑈𝑇)) → ∃𝑢𝑆 (𝑅𝑢𝑢𝑇))
169, 15mtand 815 1 (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wpss 3904   class class class wbr 5092  cfv 6482  LSubSpclss 20834  L clcv 39001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-lcv 39002
This theorem is referenced by:  lcvntr  39009  lcvnbtwn2  39010  lcvnbtwn3  39011
  Copyright terms: Public domain W3C validator