Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvnbtwn | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. (cvnbtwn 30161 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvnbtwn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvnbtwn.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvnbtwn.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvnbtwn.r | ⊢ (𝜑 → 𝑅 ∈ 𝑆) |
lcvnbtwn.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvnbtwn.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvnbtwn.d | ⊢ (𝜑 → 𝑅𝐶𝑇) |
Ref | Expression |
---|---|
lcvnbtwn | ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvnbtwn.d | . . . 4 ⊢ (𝜑 → 𝑅𝐶𝑇) | |
2 | lcvnbtwn.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lcvnbtwn.c | . . . . 5 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
4 | lcvnbtwn.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
5 | lcvnbtwn.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑆) | |
6 | lcvnbtwn.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lcvbr 36590 | . . . 4 ⊢ (𝜑 → (𝑅𝐶𝑇 ↔ (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)))) |
8 | 1, 7 | mpbid 235 | . . 3 ⊢ (𝜑 → (𝑅 ⊊ 𝑇 ∧ ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇))) |
9 | 8 | simprd 500 | . 2 ⊢ (𝜑 → ¬ ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
10 | lcvnbtwn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
11 | psseq2 3995 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑅 ⊊ 𝑢 ↔ 𝑅 ⊊ 𝑈)) | |
12 | psseq1 3994 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝑢 ⊊ 𝑇 ↔ 𝑈 ⊊ 𝑇)) | |
13 | 11, 12 | anbi12d 634 | . . . 4 ⊢ (𝑢 = 𝑈 → ((𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇) ↔ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇))) |
14 | 13 | rspcev 3542 | . . 3 ⊢ ((𝑈 ∈ 𝑆 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
15 | 10, 14 | sylan 584 | . 2 ⊢ ((𝜑 ∧ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) → ∃𝑢 ∈ 𝑆 (𝑅 ⊊ 𝑢 ∧ 𝑢 ⊊ 𝑇)) |
16 | 9, 15 | mtand 816 | 1 ⊢ (𝜑 → ¬ (𝑅 ⊊ 𝑈 ∧ 𝑈 ⊊ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∃wrex 3072 ⊊ wpss 3860 class class class wbr 5033 ‘cfv 6336 LSubSpclss 19764 ⋖L clcv 36587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-iota 6295 df-fun 6338 df-fv 6344 df-lcv 36588 |
This theorem is referenced by: lcvntr 36595 lcvnbtwn2 36596 lcvnbtwn3 36597 |
Copyright terms: Public domain | W3C validator |