Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvpss | Structured version Visualization version GIF version |
Description: The covers relation implies proper subset. (cvpss 30548 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvfbr.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvfbr.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvfbr.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvfbr.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvfbr.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvpss.d | ⊢ (𝜑 → 𝑇𝐶𝑈) |
Ref | Expression |
---|---|
lcvpss | ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvpss.d | . . 3 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
2 | lcvfbr.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lcvfbr.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
4 | lcvfbr.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
5 | lcvfbr.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
6 | lcvfbr.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lcvbr 36962 | . . 3 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
8 | 1, 7 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
9 | 8 | simpld 494 | 1 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊊ wpss 3884 class class class wbr 5070 ‘cfv 6418 LSubSpclss 20108 ⋖L clcv 36959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-lcv 36960 |
This theorem is referenced by: lcvntr 36967 lcvat 36971 lsatcveq0 36973 lsat0cv 36974 lcvexchlem4 36978 lcvexchlem5 36979 lcv1 36982 lsatexch 36984 lsatcvat2 36992 islshpcv 36994 |
Copyright terms: Public domain | W3C validator |