Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvpss Structured version   Visualization version   GIF version

Theorem lcvpss 36965
Description: The covers relation implies proper subset. (cvpss 30548 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
lcvpss.d (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvpss (𝜑𝑇𝑈)

Proof of Theorem lcvpss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcvpss.d . . 3 (𝜑𝑇𝐶𝑈)
2 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
3 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
4 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
5 lcvfbr.t . . . 4 (𝜑𝑇𝑆)
6 lcvfbr.u . . . 4 (𝜑𝑈𝑆)
72, 3, 4, 5, 6lcvbr 36962 . . 3 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
81, 7mpbid 231 . 2 (𝜑 → (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
98simpld 494 1 (𝜑𝑇𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  wpss 3884   class class class wbr 5070  cfv 6418  LSubSpclss 20108  L clcv 36959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-lcv 36960
This theorem is referenced by:  lcvntr  36967  lcvat  36971  lsatcveq0  36973  lsat0cv  36974  lcvexchlem4  36978  lcvexchlem5  36979  lcv1  36982  lsatexch  36984  lsatcvat2  36992  islshpcv  36994
  Copyright terms: Public domain W3C validator