Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcvpss | Structured version Visualization version GIF version |
Description: The covers relation implies proper subset. (cvpss 30935 analog.) (Contributed by NM, 7-Jan-2015.) |
Ref | Expression |
---|---|
lcvfbr.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lcvfbr.c | ⊢ 𝐶 = ( ⋖L ‘𝑊) |
lcvfbr.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
lcvfbr.t | ⊢ (𝜑 → 𝑇 ∈ 𝑆) |
lcvfbr.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lcvpss.d | ⊢ (𝜑 → 𝑇𝐶𝑈) |
Ref | Expression |
---|---|
lcvpss | ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcvpss.d | . . 3 ⊢ (𝜑 → 𝑇𝐶𝑈) | |
2 | lcvfbr.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lcvfbr.c | . . . 4 ⊢ 𝐶 = ( ⋖L ‘𝑊) | |
4 | lcvfbr.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
5 | lcvfbr.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑆) | |
6 | lcvfbr.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | 2, 3, 4, 5, 6 | lcvbr 37288 | . . 3 ⊢ (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈)))) |
8 | 1, 7 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑇 ⊊ 𝑈 ∧ ¬ ∃𝑠 ∈ 𝑆 (𝑇 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑈))) |
9 | 8 | simpld 495 | 1 ⊢ (𝜑 → 𝑇 ⊊ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 ⊊ wpss 3899 class class class wbr 5092 ‘cfv 6479 LSubSpclss 20299 ⋖L clcv 37285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-lcv 37286 |
This theorem is referenced by: lcvntr 37293 lcvat 37297 lsatcveq0 37299 lsat0cv 37300 lcvexchlem4 37304 lcvexchlem5 37305 lcv1 37308 lsatexch 37310 lsatcvat2 37318 islshpcv 37320 |
Copyright terms: Public domain | W3C validator |