Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvpss Structured version   Visualization version   GIF version

Theorem lcvpss 35045
Description: The covers relation implies proper subset. (cvpss 29669 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
lcvpss.d (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvpss (𝜑𝑇𝑈)

Proof of Theorem lcvpss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcvpss.d . . 3 (𝜑𝑇𝐶𝑈)
2 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
3 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
4 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
5 lcvfbr.t . . . 4 (𝜑𝑇𝑆)
6 lcvfbr.u . . . 4 (𝜑𝑈𝑆)
72, 3, 4, 5, 6lcvbr 35042 . . 3 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
81, 7mpbid 224 . 2 (𝜑 → (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
98simpld 489 1 (𝜑𝑇𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385   = wceq 1653  wcel 2157  wrex 3090  wpss 3770   class class class wbr 4843  cfv 6101  LSubSpclss 19250  L clcv 35039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fv 6109  df-lcv 35040
This theorem is referenced by:  lcvntr  35047  lcvat  35051  lsatcveq0  35053  lsat0cv  35054  lcvexchlem4  35058  lcvexchlem5  35059  lcv1  35062  lsatexch  35064  lsatcvat2  35072  islshpcv  35074
  Copyright terms: Public domain W3C validator