Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvpss Structured version   Visualization version   GIF version

Theorem lcvpss 39024
Description: The covers relation implies proper subset. (cvpss 32221 analog.) (Contributed by NM, 7-Jan-2015.)
Hypotheses
Ref Expression
lcvfbr.s 𝑆 = (LSubSp‘𝑊)
lcvfbr.c 𝐶 = ( ⋖L𝑊)
lcvfbr.w (𝜑𝑊𝑋)
lcvfbr.t (𝜑𝑇𝑆)
lcvfbr.u (𝜑𝑈𝑆)
lcvpss.d (𝜑𝑇𝐶𝑈)
Assertion
Ref Expression
lcvpss (𝜑𝑇𝑈)

Proof of Theorem lcvpss
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 lcvpss.d . . 3 (𝜑𝑇𝐶𝑈)
2 lcvfbr.s . . . 4 𝑆 = (LSubSp‘𝑊)
3 lcvfbr.c . . . 4 𝐶 = ( ⋖L𝑊)
4 lcvfbr.w . . . 4 (𝜑𝑊𝑋)
5 lcvfbr.t . . . 4 (𝜑𝑇𝑆)
6 lcvfbr.u . . . 4 (𝜑𝑈𝑆)
72, 3, 4, 5, 6lcvbr 39021 . . 3 (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
81, 7mpbid 232 . 2 (𝜑 → (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈)))
98simpld 494 1 (𝜑𝑇𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  wpss 3918   class class class wbr 5110  cfv 6514  LSubSpclss 20844  L clcv 39018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-lcv 39019
This theorem is referenced by:  lcvntr  39026  lcvat  39030  lsatcveq0  39032  lsat0cv  39033  lcvexchlem4  39037  lcvexchlem5  39038  lcv1  39041  lsatexch  39043  lsatcvat2  39051  islshpcv  39053
  Copyright terms: Public domain W3C validator