| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpjat1 | Structured version Visualization version GIF version | ||
| Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unity. (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| lhpjat.l | ⊢ ≤ = (le‘𝐾) |
| lhpjat.j | ⊢ ∨ = (join‘𝐾) |
| lhpjat.u | ⊢ 1 = (1.‘𝐾) |
| lhpjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpjat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpjat1 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 766 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | |
| 2 | eqid 2735 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | lhpjat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 2, 3 | lhpbase 40017 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 5 | 4 | ad2antlr 727 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
| 6 | simprl 770 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
| 7 | lhpjat.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
| 8 | eqid 2735 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 9 | 7, 8, 3 | lhp1cvr 40018 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾) 1 ) |
| 10 | 9 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊( ⋖ ‘𝐾) 1 ) |
| 11 | simprr 772 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
| 12 | lhpjat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 13 | lhpjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 14 | lhpjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 15 | 2, 12, 13, 7, 8, 14 | 1cvrjat 39494 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ 𝑃 ∈ 𝐴) ∧ (𝑊( ⋖ ‘𝐾) 1 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
| 16 | 1, 5, 6, 10, 11, 15 | syl32anc 1380 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 joincjn 18323 1.cp1 18434 ⋖ ccvr 39280 Atomscatm 39281 HLchlt 39368 LHypclh 40003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40007 |
| This theorem is referenced by: lhpjat2 40040 lhpj1 40041 trljat1 40185 trljat2 40186 cdlemc1 40210 cdlemc6 40215 cdleme20c 40330 cdleme20j 40337 trlcolem 40745 |
| Copyright terms: Public domain | W3C validator |