![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpjat1 | Structured version Visualization version GIF version |
Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
lhpjat.l | ⊢ ≤ = (le‘𝐾) |
lhpjat.j | ⊢ ∨ = (join‘𝐾) |
lhpjat.u | ⊢ 1 = (1.‘𝐾) |
lhpjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpjat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpjat1 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 757 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | |
2 | eqid 2777 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | lhpjat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | lhpbase 36147 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
5 | 4 | ad2antlr 717 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
6 | simprl 761 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
7 | lhpjat.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
8 | eqid 2777 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | 7, 8, 3 | lhp1cvr 36148 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾) 1 ) |
10 | 9 | adantr 474 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊( ⋖ ‘𝐾) 1 ) |
11 | simprr 763 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
12 | lhpjat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
13 | lhpjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
14 | lhpjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 2, 12, 13, 7, 8, 14 | 1cvrjat 35624 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ 𝑃 ∈ 𝐴) ∧ (𝑊( ⋖ ‘𝐾) 1 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
16 | 1, 5, 6, 10, 11, 15 | syl32anc 1446 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 lecple 16345 joincjn 17330 1.cp1 17424 ⋖ ccvr 35411 Atomscatm 35412 HLchlt 35499 LHypclh 36133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-oposet 35325 df-ol 35327 df-oml 35328 df-covers 35415 df-ats 35416 df-atl 35447 df-cvlat 35471 df-hlat 35500 df-lhyp 36137 |
This theorem is referenced by: lhpjat2 36170 lhpj1 36171 trljat1 36315 trljat2 36316 cdlemc1 36340 cdlemc6 36345 cdleme20c 36460 cdleme20j 36467 trlcolem 36875 |
Copyright terms: Public domain | W3C validator |