Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpjat1 | Structured version Visualization version GIF version |
Description: The join of a co-atom (hyperplane) and an atom not under it is the lattice unit. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
lhpjat.l | ⊢ ≤ = (le‘𝐾) |
lhpjat.j | ⊢ ∨ = (join‘𝐾) |
lhpjat.u | ⊢ 1 = (1.‘𝐾) |
lhpjat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpjat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpjat1 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 767 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝐾 ∈ HL) | |
2 | eqid 2737 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | lhpjat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | lhpbase 37749 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
5 | 4 | ad2antlr 727 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊 ∈ (Base‘𝐾)) |
6 | simprl 771 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ∈ 𝐴) | |
7 | lhpjat.u | . . . 4 ⊢ 1 = (1.‘𝐾) | |
8 | eqid 2737 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
9 | 7, 8, 3 | lhp1cvr 37750 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾) 1 ) |
10 | 9 | adantr 484 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑊( ⋖ ‘𝐾) 1 ) |
11 | simprr 773 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ 𝑊) | |
12 | lhpjat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
13 | lhpjat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
14 | lhpjat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
15 | 2, 12, 13, 7, 8, 14 | 1cvrjat 37226 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾) ∧ 𝑃 ∈ 𝐴) ∧ (𝑊( ⋖ ‘𝐾) 1 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
16 | 1, 5, 6, 10, 11, 15 | syl32anc 1380 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑊 ∨ 𝑃) = 1 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 lecple 16809 joincjn 17818 1.cp1 17930 ⋖ ccvr 37013 Atomscatm 37014 HLchlt 37101 LHypclh 37735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-lhyp 37739 |
This theorem is referenced by: lhpjat2 37772 lhpj1 37773 trljat1 37917 trljat2 37918 cdlemc1 37942 cdlemc6 37947 cdleme20c 38062 cdleme20j 38069 trlcolem 38477 |
Copyright terms: Public domain | W3C validator |