Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat Structured version   Visualization version   GIF version

Theorem lhpat 36055
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
lhpat.l = (le‘𝐾)
lhpat.j = (join‘𝐾)
lhpat.m = (meet‘𝐾)
lhpat.a 𝐴 = (Atoms‘𝐾)
lhpat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)

Proof of Theorem lhpat
StepHypRef Expression
1 simp1l 1255 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝐾 ∈ HL)
2 simp2l 1257 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑃𝐴)
3 simp3l 1259 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑄𝐴)
4 simp1r 1256 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊𝐻)
5 eqid 2797 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 lhpat.h . . . 4 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 36010 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
84, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊 ∈ (Base‘𝐾))
9 simp3r 1260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑃𝑄)
10 eqid 2797 . . . 4 (1.‘𝐾) = (1.‘𝐾)
11 eqid 2797 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
1210, 11, 6lhp1cvr 36011 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
13123ad2ant1 1164 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
14 simp2r 1258 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ¬ 𝑃 𝑊)
15 lhpat.l . . 3 = (le‘𝐾)
16 lhpat.j . . 3 = (join‘𝐾)
17 lhpat.m . . 3 = (meet‘𝐾)
18 lhpat.a . . 3 𝐴 = (Atoms‘𝐾)
195, 15, 16, 17, 10, 11, 181cvrat 35488 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑊 ∈ (Base‘𝐾)) ∧ (𝑃𝑄𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 𝑊)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
201, 2, 3, 8, 9, 13, 14, 19syl133anc 1513 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2969   class class class wbr 4841  cfv 6099  (class class class)co 6876  Basecbs 16180  lecple 16270  joincjn 17255  meetcmee 17256  1.cp1 17349  ccvr 35274  Atomscatm 35275  HLchlt 35362  LHypclh 35996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-proset 17239  df-poset 17257  df-plt 17269  df-lub 17285  df-glb 17286  df-join 17287  df-meet 17288  df-p0 17350  df-p1 17351  df-lat 17357  df-clat 17419  df-oposet 35188  df-ol 35190  df-oml 35191  df-covers 35278  df-ats 35279  df-atl 35310  df-cvlat 35334  df-hlat 35363  df-lhyp 36000
This theorem is referenced by:  lhpat2  36057  4atexlemex6  36086  trlat  36181  cdlemc5  36207  cdleme3e  36244  cdleme7b  36256  cdleme11k  36280  cdleme16e  36294  cdleme16f  36295  cdlemeda  36310  cdleme22cN  36354  cdleme22d  36355  cdleme23b  36362  cdlemf2  36574  cdlemg12g  36661  cdlemg17dALTN  36676  cdlemg19a  36695
  Copyright terms: Public domain W3C validator