![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpat | Structured version Visualization version GIF version |
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
Ref | Expression |
---|---|
lhpat.l | ⊢ ≤ = (le‘𝐾) |
lhpat.j | ⊢ ∨ = (join‘𝐾) |
lhpat.m | ⊢ ∧ = (meet‘𝐾) |
lhpat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1188 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝐾 ∈ HL) | |
2 | simp2l 1190 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ 𝐴) | |
3 | simp3l 1192 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ 𝐴) | |
4 | simp1r 1189 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑊 ∈ 𝐻) | |
5 | eqid 2793 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
6 | lhpat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 5, 6 | lhpbase 36615 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
8 | 4, 7 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑊 ∈ (Base‘𝐾)) |
9 | simp3r 1193 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ≠ 𝑄) | |
10 | eqid 2793 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
11 | eqid 2793 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
12 | 10, 11, 6 | lhp1cvr 36616 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
13 | 12 | 3ad2ant1 1124 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
14 | simp2r 1191 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ¬ 𝑃 ≤ 𝑊) | |
15 | lhpat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
16 | lhpat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
17 | lhpat.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
18 | lhpat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
19 | 5, 15, 16, 17, 10, 11, 18 | 1cvrat 36093 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
20 | 1, 2, 3, 8, 9, 13, 14, 19 | syl133anc 1384 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 class class class wbr 4956 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 lecple 16389 joincjn 17371 meetcmee 17372 1.cp1 17465 ⋖ ccvr 35879 Atomscatm 35880 HLchlt 35967 LHypclh 36601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-proset 17355 df-poset 17373 df-plt 17385 df-lub 17401 df-glb 17402 df-join 17403 df-meet 17404 df-p0 17466 df-p1 17467 df-lat 17473 df-clat 17535 df-oposet 35793 df-ol 35795 df-oml 35796 df-covers 35883 df-ats 35884 df-atl 35915 df-cvlat 35939 df-hlat 35968 df-lhyp 36605 |
This theorem is referenced by: lhpat2 36662 4atexlemex6 36691 trlat 36786 cdlemc5 36812 cdleme3e 36849 cdleme7b 36861 cdleme11k 36885 cdleme16e 36899 cdleme16f 36900 cdlemeda 36915 cdleme22cN 36959 cdleme22d 36960 cdleme23b 36967 cdlemf2 37179 cdlemg12g 37266 cdlemg17dALTN 37281 cdlemg19a 37300 |
Copyright terms: Public domain | W3C validator |