Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpat Structured version   Visualization version   GIF version

Theorem lhpat 36660
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
lhpat.l = (le‘𝐾)
lhpat.j = (join‘𝐾)
lhpat.m = (meet‘𝐾)
lhpat.a 𝐴 = (Atoms‘𝐾)
lhpat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpat (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)

Proof of Theorem lhpat
StepHypRef Expression
1 simp1l 1188 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝐾 ∈ HL)
2 simp2l 1190 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑃𝐴)
3 simp3l 1192 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑄𝐴)
4 simp1r 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊𝐻)
5 eqid 2793 . . . 4 (Base‘𝐾) = (Base‘𝐾)
6 lhpat.h . . . 4 𝐻 = (LHyp‘𝐾)
75, 6lhpbase 36615 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
84, 7syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊 ∈ (Base‘𝐾))
9 simp3r 1193 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑃𝑄)
10 eqid 2793 . . . 4 (1.‘𝐾) = (1.‘𝐾)
11 eqid 2793 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
1210, 11, 6lhp1cvr 36616 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
13123ad2ant1 1124 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾))
14 simp2r 1191 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ¬ 𝑃 𝑊)
15 lhpat.l . . 3 = (le‘𝐾)
16 lhpat.j . . 3 = (join‘𝐾)
17 lhpat.m . . 3 = (meet‘𝐾)
18 lhpat.a . . 3 𝐴 = (Atoms‘𝐾)
195, 15, 16, 17, 10, 11, 181cvrat 36093 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑊 ∈ (Base‘𝐾)) ∧ (𝑃𝑄𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 𝑊)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
201, 2, 3, 8, 9, 13, 14, 19syl133anc 1384 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → ((𝑃 𝑄) 𝑊) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982   class class class wbr 4956  cfv 6217  (class class class)co 7007  Basecbs 16300  lecple 16389  joincjn 17371  meetcmee 17372  1.cp1 17465  ccvr 35879  Atomscatm 35880  HLchlt 35967  LHypclh 36601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-proset 17355  df-poset 17373  df-plt 17385  df-lub 17401  df-glb 17402  df-join 17403  df-meet 17404  df-p0 17466  df-p1 17467  df-lat 17473  df-clat 17535  df-oposet 35793  df-ol 35795  df-oml 35796  df-covers 35883  df-ats 35884  df-atl 35915  df-cvlat 35939  df-hlat 35968  df-lhyp 36605
This theorem is referenced by:  lhpat2  36662  4atexlemex6  36691  trlat  36786  cdlemc5  36812  cdleme3e  36849  cdleme7b  36861  cdleme11k  36885  cdleme16e  36899  cdleme16f  36900  cdlemeda  36915  cdleme22cN  36959  cdleme22d  36960  cdleme23b  36967  cdlemf2  37179  cdlemg12g  37266  cdlemg17dALTN  37281  cdlemg19a  37300
  Copyright terms: Public domain W3C validator