| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpat | Structured version Visualization version GIF version | ||
| Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
| Ref | Expression |
|---|---|
| lhpat.l | ⊢ ≤ = (le‘𝐾) |
| lhpat.j | ⊢ ∨ = (join‘𝐾) |
| lhpat.m | ⊢ ∧ = (meet‘𝐾) |
| lhpat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1198 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝐾 ∈ HL) | |
| 2 | simp2l 1200 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ∈ 𝐴) | |
| 3 | simp3l 1202 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑄 ∈ 𝐴) | |
| 4 | simp1r 1199 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑊 ∈ 𝐻) | |
| 5 | eqid 2735 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 6 | lhpat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | 5, 6 | lhpbase 40017 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 8 | 4, 7 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑊 ∈ (Base‘𝐾)) |
| 9 | simp3r 1203 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑃 ≠ 𝑄) | |
| 10 | eqid 2735 | . . . 4 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
| 11 | eqid 2735 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 12 | 10, 11, 6 | lhp1cvr 40018 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
| 13 | 12 | 3ad2ant1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑊( ⋖ ‘𝐾)(1.‘𝐾)) |
| 14 | simp2r 1201 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ¬ 𝑃 ≤ 𝑊) | |
| 15 | lhpat.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 16 | lhpat.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 17 | lhpat.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 18 | lhpat.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 19 | 5, 15, 16, 17, 10, 11, 18 | 1cvrat 39495 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑊 ∈ (Base‘𝐾)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑊( ⋖ ‘𝐾)(1.‘𝐾) ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
| 20 | 1, 2, 3, 8, 9, 13, 14, 19 | syl133anc 1395 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 joincjn 18323 meetcmee 18324 1.cp1 18434 ⋖ ccvr 39280 Atomscatm 39281 HLchlt 39368 LHypclh 40003 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40007 |
| This theorem is referenced by: lhpat2 40064 4atexlemex6 40093 trlat 40188 cdlemc5 40214 cdleme3e 40251 cdleme7b 40263 cdleme11k 40287 cdleme16e 40301 cdleme16f 40302 cdlemeda 40317 cdleme22cN 40361 cdleme22d 40362 cdleme23b 40369 cdlemf2 40581 cdlemg12g 40668 cdlemg17dALTN 40683 cdlemg19a 40702 |
| Copyright terms: Public domain | W3C validator |