![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpat | Structured version Visualization version GIF version |
Description: Create an atom under a co-atom. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 23-May-2012.) |
Ref | Expression |
---|---|
lhpat.l | β’ β€ = (leβπΎ) |
lhpat.j | β’ β¨ = (joinβπΎ) |
lhpat.m | β’ β§ = (meetβπΎ) |
lhpat.a | β’ π΄ = (AtomsβπΎ) |
lhpat.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
lhpat | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β ((π β¨ π) β§ π) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1195 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β πΎ β HL) | |
2 | simp2l 1197 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) | |
3 | simp3l 1199 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) | |
4 | simp1r 1196 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π») | |
5 | eqid 2730 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
6 | lhpat.h | . . . 4 β’ π» = (LHypβπΎ) | |
7 | 5, 6 | lhpbase 39172 | . . 3 β’ (π β π» β π β (BaseβπΎ)) |
8 | 4, 7 | syl 17 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β (BaseβπΎ)) |
9 | simp3r 1200 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π) | |
10 | eqid 2730 | . . . 4 β’ (1.βπΎ) = (1.βπΎ) | |
11 | eqid 2730 | . . . 4 β’ ( β βπΎ) = ( β βπΎ) | |
12 | 10, 11, 6 | lhp1cvr 39173 | . . 3 β’ ((πΎ β HL β§ π β π») β π( β βπΎ)(1.βπΎ)) |
13 | 12 | 3ad2ant1 1131 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π( β βπΎ)(1.βπΎ)) |
14 | simp2r 1198 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β Β¬ π β€ π) | |
15 | lhpat.l | . . 3 β’ β€ = (leβπΎ) | |
16 | lhpat.j | . . 3 β’ β¨ = (joinβπΎ) | |
17 | lhpat.m | . . 3 β’ β§ = (meetβπΎ) | |
18 | lhpat.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
19 | 5, 15, 16, 17, 10, 11, 18 | 1cvrat 38650 | . 2 β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π β (BaseβπΎ)) β§ (π β π β§ π( β βπΎ)(1.βπΎ) β§ Β¬ π β€ π)) β ((π β¨ π) β§ π) β π΄) |
20 | 1, 2, 3, 8, 9, 13, 14, 19 | syl133anc 1391 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β ((π β¨ π) β§ π) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 meetcmee 18269 1.cp1 18381 β ccvr 38435 Atomscatm 38436 HLchlt 38523 LHypclh 39158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-lhyp 39162 |
This theorem is referenced by: lhpat2 39219 4atexlemex6 39248 trlat 39343 cdlemc5 39369 cdleme3e 39406 cdleme7b 39418 cdleme11k 39442 cdleme16e 39456 cdleme16f 39457 cdlemeda 39472 cdleme22cN 39516 cdleme22d 39517 cdleme23b 39524 cdlemf2 39736 cdlemg12g 39823 cdlemg17dALTN 39838 cdlemg19a 39857 |
Copyright terms: Public domain | W3C validator |