Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmcvr | Structured version Visualization version GIF version |
Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.) |
Ref | Expression |
---|---|
lhpmcvr.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpmcvr.l | ⊢ ≤ = (le‘𝐾) |
lhpmcvr.m | ⊢ ∧ = (meet‘𝐾) |
lhpmcvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpmcvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpmcvr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37377 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | ad2antrr 723 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ Lat) |
3 | simprl 768 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
4 | lhpmcvr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | lhpmcvr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | 4, 5 | lhpbase 38012 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
7 | 6 | ad2antlr 724 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
8 | lhpmcvr.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 4, 8 | latmcom 18181 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
10 | 2, 3, 7, 9 | syl3anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
11 | eqid 2738 | . . . . . 6 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
12 | lhpmcvr.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
13 | 11, 12, 5 | lhp1cvr 38013 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶(1.‘𝐾)) |
14 | 13 | adantr 481 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(1.‘𝐾)) |
15 | lhpmcvr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
16 | eqid 2738 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
17 | 4, 15, 16, 11, 5 | lhpj1 38036 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊(join‘𝐾)𝑋) = (1.‘𝐾)) |
18 | 14, 17 | breqtrrd 5102 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(𝑊(join‘𝐾)𝑋)) |
19 | simpll 764 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | |
20 | 4, 16, 8, 12 | cvrexch 37434 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
21 | 19, 7, 3, 20 | syl3anc 1370 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
22 | 18, 21 | mpbird 256 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊 ∧ 𝑋)𝐶𝑋) |
23 | 10, 22 | eqbrtrd 5096 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 1.cp1 18142 Latclat 18149 ⋖ ccvr 37276 HLchlt 37364 LHypclh 37998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-lhyp 38002 |
This theorem is referenced by: lhpmcvr2 38038 lhpm0atN 38043 |
Copyright terms: Public domain | W3C validator |