Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmcvr | Structured version Visualization version GIF version |
Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.) |
Ref | Expression |
---|---|
lhpmcvr.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpmcvr.l | ⊢ ≤ = (le‘𝐾) |
lhpmcvr.m | ⊢ ∧ = (meet‘𝐾) |
lhpmcvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpmcvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpmcvr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37304 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | ad2antrr 722 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ Lat) |
3 | simprl 767 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
4 | lhpmcvr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | lhpmcvr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | 4, 5 | lhpbase 37939 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
7 | 6 | ad2antlr 723 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
8 | lhpmcvr.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 4, 8 | latmcom 18096 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
10 | 2, 3, 7, 9 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
11 | eqid 2738 | . . . . . 6 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
12 | lhpmcvr.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
13 | 11, 12, 5 | lhp1cvr 37940 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶(1.‘𝐾)) |
14 | 13 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(1.‘𝐾)) |
15 | lhpmcvr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
16 | eqid 2738 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
17 | 4, 15, 16, 11, 5 | lhpj1 37963 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊(join‘𝐾)𝑋) = (1.‘𝐾)) |
18 | 14, 17 | breqtrrd 5098 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(𝑊(join‘𝐾)𝑋)) |
19 | simpll 763 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | |
20 | 4, 16, 8, 12 | cvrexch 37361 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
21 | 19, 7, 3, 20 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
22 | 18, 21 | mpbird 256 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊 ∧ 𝑋)𝐶𝑋) |
23 | 10, 22 | eqbrtrd 5092 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 meetcmee 17945 1.cp1 18057 Latclat 18064 ⋖ ccvr 37203 HLchlt 37291 LHypclh 37925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 |
This theorem is referenced by: lhpmcvr2 37965 lhpm0atN 37970 |
Copyright terms: Public domain | W3C validator |