Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpmcvr | Structured version Visualization version GIF version |
Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.) |
Ref | Expression |
---|---|
lhpmcvr.b | ⊢ 𝐵 = (Base‘𝐾) |
lhpmcvr.l | ⊢ ≤ = (le‘𝐾) |
lhpmcvr.m | ⊢ ∧ = (meet‘𝐾) |
lhpmcvr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
lhpmcvr.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpmcvr | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 36932 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | ad2antrr 726 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ Lat) |
3 | simprl 771 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑋 ∈ 𝐵) | |
4 | lhpmcvr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | lhpmcvr.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | 4, 5 | lhpbase 37567 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
7 | 6 | ad2antlr 727 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
8 | lhpmcvr.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
9 | 4, 8 | latmcom 17744 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
10 | 2, 3, 7, 9 | syl3anc 1369 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊) = (𝑊 ∧ 𝑋)) |
11 | eqid 2759 | . . . . . 6 ⊢ (1.‘𝐾) = (1.‘𝐾) | |
12 | lhpmcvr.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
13 | 11, 12, 5 | lhp1cvr 37568 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊𝐶(1.‘𝐾)) |
14 | 13 | adantr 485 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(1.‘𝐾)) |
15 | lhpmcvr.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
16 | eqid 2759 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
17 | 4, 15, 16, 11, 5 | lhpj1 37591 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊(join‘𝐾)𝑋) = (1.‘𝐾)) |
18 | 14, 17 | breqtrrd 5061 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝑊𝐶(𝑊(join‘𝐾)𝑋)) |
19 | simpll 767 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → 𝐾 ∈ HL) | |
20 | 4, 16, 8, 12 | cvrexch 36989 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
21 | 19, 7, 3, 20 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → ((𝑊 ∧ 𝑋)𝐶𝑋 ↔ 𝑊𝐶(𝑊(join‘𝐾)𝑋))) |
22 | 18, 21 | mpbird 260 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑊 ∧ 𝑋)𝐶𝑋) |
23 | 10, 22 | eqbrtrd 5055 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) → (𝑋 ∧ 𝑊)𝐶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 Basecbs 16534 lecple 16623 joincjn 17613 meetcmee 17614 1.cp1 17707 Latclat 17714 ⋖ ccvr 36831 HLchlt 36919 LHypclh 37553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-proset 17597 df-poset 17615 df-plt 17627 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-p0 17708 df-p1 17709 df-lat 17715 df-clat 17777 df-oposet 36745 df-ol 36747 df-oml 36748 df-covers 36835 df-ats 36836 df-atl 36867 df-cvlat 36891 df-hlat 36920 df-lhyp 37557 |
This theorem is referenced by: lhpmcvr2 37593 lhpm0atN 37598 |
Copyright terms: Public domain | W3C validator |