Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr Structured version   Visualization version   GIF version

Theorem lhpmcvr 37592
 Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
lhpmcvr.b 𝐵 = (Base‘𝐾)
lhpmcvr.l = (le‘𝐾)
lhpmcvr.m = (meet‘𝐾)
lhpmcvr.c 𝐶 = ( ⋖ ‘𝐾)
lhpmcvr.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmcvr (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊)𝐶𝑋)

Proof of Theorem lhpmcvr
StepHypRef Expression
1 hllat 36932 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21ad2antrr 726 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝐾 ∈ Lat)
3 simprl 771 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
4 lhpmcvr.b . . . . 5 𝐵 = (Base‘𝐾)
5 lhpmcvr.h . . . . 5 𝐻 = (LHyp‘𝐾)
64, 5lhpbase 37567 . . . 4 (𝑊𝐻𝑊𝐵)
76ad2antlr 727 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐵)
8 lhpmcvr.m . . . 4 = (meet‘𝐾)
94, 8latmcom 17744 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) = (𝑊 𝑋))
102, 3, 7, 9syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊) = (𝑊 𝑋))
11 eqid 2759 . . . . . 6 (1.‘𝐾) = (1.‘𝐾)
12 lhpmcvr.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
1311, 12, 5lhp1cvr 37568 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊𝐶(1.‘𝐾))
1413adantr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐶(1.‘𝐾))
15 lhpmcvr.l . . . . 5 = (le‘𝐾)
16 eqid 2759 . . . . 5 (join‘𝐾) = (join‘𝐾)
174, 15, 16, 11, 5lhpj1 37591 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊(join‘𝐾)𝑋) = (1.‘𝐾))
1814, 17breqtrrd 5061 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐶(𝑊(join‘𝐾)𝑋))
19 simpll 767 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝐾 ∈ HL)
204, 16, 8, 12cvrexch 36989 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐵𝑋𝐵) → ((𝑊 𝑋)𝐶𝑋𝑊𝐶(𝑊(join‘𝐾)𝑋)))
2119, 7, 3, 20syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝑊 𝑋)𝐶𝑋𝑊𝐶(𝑊(join‘𝐾)𝑋)))
2218, 21mpbird 260 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑊 𝑋)𝐶𝑋)
2310, 22eqbrtrd 5055 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊)𝐶𝑋)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112   class class class wbr 5033  ‘cfv 6336  (class class class)co 7151  Basecbs 16534  lecple 16623  joincjn 17613  meetcmee 17614  1.cp1 17707  Latclat 17714   ⋖ ccvr 36831  HLchlt 36919  LHypclh 37553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17597  df-poset 17615  df-plt 17627  df-lub 17643  df-glb 17644  df-join 17645  df-meet 17646  df-p0 17708  df-p1 17709  df-lat 17715  df-clat 17777  df-oposet 36745  df-ol 36747  df-oml 36748  df-covers 36835  df-ats 36836  df-atl 36867  df-cvlat 36891  df-hlat 36920  df-lhyp 37557 This theorem is referenced by:  lhpmcvr2  37593  lhpm0atN  37598
 Copyright terms: Public domain W3C validator