![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > linds2 | Structured version Visualization version GIF version |
Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
linds2 | β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6934 | . . . 4 β’ (π β (LIndSβπ) β π β dom LIndS) | |
2 | eqid 2728 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
3 | 2 | islinds 21743 | . . . 4 β’ (π β dom LIndS β (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π))) |
4 | 1, 3 | syl 17 | . . 3 β’ (π β (LIndSβπ) β (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π))) |
5 | 4 | ibi 267 | . 2 β’ (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π)) |
6 | 5 | simprd 495 | 1 β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2099 β wss 3947 class class class wbr 5148 I cid 5575 dom cdm 5678 βΎ cres 5680 βcfv 6548 Basecbs 17180 LIndF clindf 21738 LIndSclinds 21739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6500 df-fun 6550 df-fv 6556 df-linds 21741 |
This theorem is referenced by: lindsind2 21753 lindsss 21758 f1linds 21759 |
Copyright terms: Public domain | W3C validator |