| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > linds2 | Structured version Visualization version GIF version | ||
| Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| linds2 | ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6895 | . . . 4 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | 2 | islinds 21718 | . . . 4 ⊢ (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
| 6 | 5 | simprd 495 | 1 ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 I cid 5532 dom cdm 5638 ↾ cres 5640 ‘cfv 6511 Basecbs 17179 LIndF clindf 21713 LIndSclinds 21714 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-linds 21716 |
| This theorem is referenced by: lindsind2 21728 lindsss 21733 f1linds 21734 |
| Copyright terms: Public domain | W3C validator |