![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > linds2 | Structured version Visualization version GIF version |
Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
linds2 | β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6925 | . . . 4 β’ (π β (LIndSβπ) β π β dom LIndS) | |
2 | eqid 2732 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
3 | 2 | islinds 21355 | . . . 4 β’ (π β dom LIndS β (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π))) |
4 | 1, 3 | syl 17 | . . 3 β’ (π β (LIndSβπ) β (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π))) |
5 | 4 | ibi 266 | . 2 β’ (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π)) |
6 | 5 | simprd 496 | 1 β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β wcel 2106 β wss 3947 class class class wbr 5147 I cid 5572 dom cdm 5675 βΎ cres 5677 βcfv 6540 Basecbs 17140 LIndF clindf 21350 LIndSclinds 21351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 df-linds 21353 |
This theorem is referenced by: lindsind2 21365 lindsss 21370 f1linds 21371 |
Copyright terms: Public domain | W3C validator |