MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  linds2 Structured version   Visualization version   GIF version

Theorem linds2 21854
Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
linds2 (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊)

Proof of Theorem linds2
StepHypRef Expression
1 elfvdm 6957 . . . 4 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
2 eqid 2740 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
32islinds 21852 . . . 4 (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)))
41, 3syl 17 . . 3 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)))
54ibi 267 . 2 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))
65simprd 495 1 (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wss 3976   class class class wbr 5166   I cid 5592  dom cdm 5700  cres 5702  cfv 6573  Basecbs 17258   LIndF clindf 21847  LIndSclinds 21848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-linds 21850
This theorem is referenced by:  lindsind2  21862  lindsss  21867  f1linds  21868
  Copyright terms: Public domain W3C validator