![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > linds2 | Structured version Visualization version GIF version |
Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
linds2 | β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6921 | . . . 4 β’ (π β (LIndSβπ) β π β dom LIndS) | |
2 | eqid 2726 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
3 | 2 | islinds 21700 | . . . 4 β’ (π β dom LIndS β (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π))) |
4 | 1, 3 | syl 17 | . . 3 β’ (π β (LIndSβπ) β (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π))) |
5 | 4 | ibi 267 | . 2 β’ (π β (LIndSβπ) β (π β (Baseβπ) β§ ( I βΎ π) LIndF π)) |
6 | 5 | simprd 495 | 1 β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 β wcel 2098 β wss 3943 class class class wbr 5141 I cid 5566 dom cdm 5669 βΎ cres 5671 βcfv 6536 Basecbs 17151 LIndF clindf 21695 LIndSclinds 21696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-res 5681 df-iota 6488 df-fun 6538 df-fv 6544 df-linds 21698 |
This theorem is referenced by: lindsind2 21710 lindsss 21715 f1linds 21716 |
Copyright terms: Public domain | W3C validator |