MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  linds2 Structured version   Visualization version   GIF version

Theorem linds2 21726
Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
linds2 (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊)

Proof of Theorem linds2
StepHypRef Expression
1 elfvdm 6897 . . . 4 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
2 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
32islinds 21724 . . . 4 (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)))
41, 3syl 17 . . 3 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)))
54ibi 267 . 2 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))
65simprd 495 1 (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3916   class class class wbr 5109   I cid 5534  dom cdm 5640  cres 5642  cfv 6513  Basecbs 17185   LIndF clindf 21719  LIndSclinds 21720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-res 5652  df-iota 6466  df-fun 6515  df-fv 6521  df-linds 21722
This theorem is referenced by:  lindsind2  21734  lindsss  21739  f1linds  21740
  Copyright terms: Public domain W3C validator