Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > linds2 | Structured version Visualization version GIF version |
Description: An independent set of vectors is independent as a family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
linds2 | ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6788 | . . . 4 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) | |
2 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | 2 | islinds 20926 | . . . 4 ⊢ (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
5 | 4 | ibi 266 | . 2 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
6 | 5 | simprd 495 | 1 ⊢ (𝑋 ∈ (LIndS‘𝑊) → ( I ↾ 𝑋) LIndF 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 I cid 5479 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 LIndF clindf 20921 LIndSclinds 20922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-linds 20924 |
This theorem is referenced by: lindsind2 20936 lindsss 20941 f1linds 20942 |
Copyright terms: Public domain | W3C validator |