MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  linds1 Structured version   Visualization version   GIF version

Theorem linds1 20553
Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
linds1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)

Proof of Theorem linds1
StepHypRef Expression
1 elfvdm 6478 . . . 4 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
2 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
32islinds 20552 . . . 4 (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
41, 3syl 17 . . 3 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
54ibi 259 . 2 (𝑋 ∈ (LIndS‘𝑊) → (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
65simpld 490 1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wss 3792   class class class wbr 4886   I cid 5260  dom cdm 5355  cres 5357  cfv 6135  Basecbs 16255   LIndF clindf 20547  LIndSclinds 20548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-res 5367  df-iota 6099  df-fun 6137  df-fv 6143  df-linds 20550
This theorem is referenced by:  lindsss  20567  lindsmm2  20572  islinds3  20577  islinds4  20578  0nellinds  30434  lindsunlem  30438  lindsun  30439  dimkerim  30441  lindsadd  34028  lindsdom  34029  lindsenlbs  34030
  Copyright terms: Public domain W3C validator