![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > linds1 | Structured version Visualization version GIF version |
Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
linds1 | ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6478 | . . . 4 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) | |
2 | islinds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | islinds 20552 | . . . 4 ⊢ (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
5 | 4 | ibi 259 | . 2 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
6 | 5 | simpld 490 | 1 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 class class class wbr 4886 I cid 5260 dom cdm 5355 ↾ cres 5357 ‘cfv 6135 Basecbs 16255 LIndF clindf 20547 LIndSclinds 20548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-res 5367 df-iota 6099 df-fun 6137 df-fv 6143 df-linds 20550 |
This theorem is referenced by: lindsss 20567 lindsmm2 20572 islinds3 20577 islinds4 20578 0nellinds 30434 lindsunlem 30438 lindsun 30439 dimkerim 30441 lindsadd 34028 lindsdom 34029 lindsenlbs 34030 |
Copyright terms: Public domain | W3C validator |