MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  linds1 Structured version   Visualization version   GIF version

Theorem linds1 20948
Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
linds1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)

Proof of Theorem linds1
StepHypRef Expression
1 elfvdm 6697 . . . 4 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
2 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
32islinds 20947 . . . 4 (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
41, 3syl 17 . . 3 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
54ibi 269 . 2 (𝑋 ∈ (LIndS‘𝑊) → (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
65simpld 497 1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3936   class class class wbr 5059   I cid 5454  dom cdm 5550  cres 5552  cfv 6350  Basecbs 16477   LIndF clindf 20942  LIndSclinds 20943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-res 5562  df-iota 6309  df-fun 6352  df-fv 6358  df-linds 20945
This theorem is referenced by:  lindsss  20962  lindsmm2  20967  islinds3  20972  islinds4  20973  0nellinds  30930  linds2eq  30936  lindsunlem  31015  lindsun  31016  dimkerim  31018  lindsadd  34879  lindsdom  34880  lindsenlbs  34881
  Copyright terms: Public domain W3C validator