![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > linds1 | Structured version Visualization version GIF version |
Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
islinds.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
linds1 | ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6957 | . . . 4 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) | |
2 | islinds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | islinds 21852 | . . . 4 ⊢ (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
5 | 4 | ibi 267 | . 2 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
6 | 5 | simpld 494 | 1 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 I cid 5592 dom cdm 5700 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 LIndF clindf 21847 LIndSclinds 21848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-linds 21850 |
This theorem is referenced by: lindsss 21867 lindsmm2 21872 islinds3 21877 islinds4 21878 0nellinds 33363 linds2eq 33374 lindsunlem 33637 lindsun 33638 dimkerim 33640 lindsadd 37573 lindsdom 37574 lindsenlbs 37575 |
Copyright terms: Public domain | W3C validator |