| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > linds1 | Structured version Visualization version GIF version | ||
| Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| islinds.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| linds1 | ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6912 | . . . 4 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) | |
| 2 | islinds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | islinds 21767 | . . . 4 ⊢ (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 I cid 5547 dom cdm 5654 ↾ cres 5656 ‘cfv 6530 Basecbs 17226 LIndF clindf 21762 LIndSclinds 21763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-res 5666 df-iota 6483 df-fun 6532 df-fv 6538 df-linds 21765 |
| This theorem is referenced by: lindsss 21782 lindsmm2 21787 islinds3 21792 islinds4 21793 0nellinds 33331 linds2eq 33342 lindsunlem 33610 lindsun 33611 dimkerim 33613 lindsadd 37583 lindsdom 37584 lindsenlbs 37585 |
| Copyright terms: Public domain | W3C validator |