MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  linds1 Structured version   Visualization version   GIF version

Theorem linds1 21726
Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
linds1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)

Proof of Theorem linds1
StepHypRef Expression
1 elfvdm 6898 . . . 4 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
2 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
32islinds 21725 . . . 4 (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
41, 3syl 17 . . 3 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
54ibi 267 . 2 (𝑋 ∈ (LIndS‘𝑊) → (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
65simpld 494 1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917   class class class wbr 5110   I cid 5535  dom cdm 5641  cres 5643  cfv 6514  Basecbs 17186   LIndF clindf 21720  LIndSclinds 21721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-iota 6467  df-fun 6516  df-fv 6522  df-linds 21723
This theorem is referenced by:  lindsss  21740  lindsmm2  21745  islinds3  21750  islinds4  21751  0nellinds  33348  linds2eq  33359  lindsunlem  33627  lindsun  33628  dimkerim  33630  lindsadd  37614  lindsdom  37615  lindsenlbs  37616
  Copyright terms: Public domain W3C validator