| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > linds1 | Structured version Visualization version GIF version | ||
| Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| islinds.b | ⊢ 𝐵 = (Base‘𝑊) |
| Ref | Expression |
|---|---|
| linds1 | ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6862 | . . . 4 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) | |
| 2 | islinds.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | islinds 21748 | . . . 4 ⊢ (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))) |
| 5 | 4 | ibi 267 | . 2 ⊢ (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ⊆ 𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)) |
| 6 | 5 | simpld 494 | 1 ⊢ (𝑋 ∈ (LIndS‘𝑊) → 𝑋 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 I cid 5513 dom cdm 5619 ↾ cres 5621 ‘cfv 6486 Basecbs 17122 LIndF clindf 21743 LIndSclinds 21744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fv 6494 df-linds 21746 |
| This theorem is referenced by: lindsss 21763 lindsmm2 21768 islinds3 21773 islinds4 21774 0nellinds 33342 linds2eq 33353 lindsunlem 33658 lindsun 33659 dimkerim 33661 lindsadd 37673 lindsdom 37674 lindsenlbs 37675 |
| Copyright terms: Public domain | W3C validator |