MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  linds1 Structured version   Visualization version   GIF version

Theorem linds1 20927
Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
linds1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)

Proof of Theorem linds1
StepHypRef Expression
1 elfvdm 6788 . . . 4 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
2 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
32islinds 20926 . . . 4 (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
41, 3syl 17 . . 3 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
54ibi 266 . 2 (𝑋 ∈ (LIndS‘𝑊) → (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
65simpld 494 1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070   I cid 5479  dom cdm 5580  cres 5582  cfv 6418  Basecbs 16840   LIndF clindf 20921  LIndSclinds 20922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-linds 20924
This theorem is referenced by:  lindsss  20941  lindsmm2  20946  islinds3  20951  islinds4  20952  0nellinds  31468  linds2eq  31477  lindsunlem  31607  lindsun  31608  dimkerim  31610  lindsadd  35697  lindsdom  35698  lindsenlbs  35699
  Copyright terms: Public domain W3C validator