MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  linds1 Structured version   Visualization version   GIF version

Theorem linds1 21735
Description: An independent set of vectors is a set of vectors. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
linds1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)

Proof of Theorem linds1
StepHypRef Expression
1 elfvdm 6861 . . . 4 (𝑋 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
2 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
32islinds 21734 . . . 4 (𝑊 ∈ dom LIndS → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
41, 3syl 17 . . 3 (𝑋 ∈ (LIndS‘𝑊) → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
54ibi 267 . 2 (𝑋 ∈ (LIndS‘𝑊) → (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
65simpld 494 1 (𝑋 ∈ (LIndS‘𝑊) → 𝑋𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3905   class class class wbr 5095   I cid 5517  dom cdm 5623  cres 5625  cfv 6486  Basecbs 17138   LIndF clindf 21729  LIndSclinds 21730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-linds 21732
This theorem is referenced by:  lindsss  21749  lindsmm2  21754  islinds3  21759  islinds4  21760  0nellinds  33317  linds2eq  33328  lindsunlem  33596  lindsun  33597  dimkerim  33599  lindsadd  37592  lindsdom  37593  lindsenlbs  37594
  Copyright terms: Public domain W3C validator