MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsss Structured version   Visualization version   GIF version

Theorem lindsss 21733
Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindsss ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))

Proof of Theorem lindsss
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
21linds1 21719 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
32adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → 𝐹 ⊆ (Base‘𝑊))
4 sstr2 3953 . . . 4 (𝐺𝐹 → (𝐹 ⊆ (Base‘𝑊) → 𝐺 ⊆ (Base‘𝑊)))
53, 4syl5com 31 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → (𝐺𝐹𝐺 ⊆ (Base‘𝑊)))
653impia 1117 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ⊆ (Base‘𝑊))
7 simp1 1136 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
8 linds2 21720 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊)
983ad2ant2 1134 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐹) LIndF 𝑊)
10 lindfres 21732 . . . 4 ((𝑊 ∈ LMod ∧ ( I ↾ 𝐹) LIndF 𝑊) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
117, 9, 10syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
12 resabs1 5977 . . . . 5 (𝐺𝐹 → (( I ↾ 𝐹) ↾ 𝐺) = ( I ↾ 𝐺))
1312breq1d 5117 . . . 4 (𝐺𝐹 → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
14133ad2ant3 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
1511, 14mpbid 232 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐺) LIndF 𝑊)
161islinds 21718 . . 3 (𝑊 ∈ LMod → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
17163ad2ant1 1133 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
186, 15, 17mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wss 3914   class class class wbr 5107   I cid 5532  cres 5640  cfv 6511  Basecbs 17179  LModclmod 20766   LIndF clindf 21713  LIndSclinds 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lindf 21715  df-linds 21716
This theorem is referenced by:  islinds4  21744  linds2eq  33352  dimkerim  33623
  Copyright terms: Public domain W3C validator