MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsss Structured version   Visualization version   GIF version

Theorem lindsss 20567
Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindsss ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))

Proof of Theorem lindsss
StepHypRef Expression
1 eqid 2778 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
21linds1 20553 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
32adantl 475 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → 𝐹 ⊆ (Base‘𝑊))
4 sstr2 3828 . . . 4 (𝐺𝐹 → (𝐹 ⊆ (Base‘𝑊) → 𝐺 ⊆ (Base‘𝑊)))
53, 4syl5com 31 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → (𝐺𝐹𝐺 ⊆ (Base‘𝑊)))
653impia 1106 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ⊆ (Base‘𝑊))
7 simp1 1127 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
8 linds2 20554 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊)
983ad2ant2 1125 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐹) LIndF 𝑊)
10 lindfres 20566 . . . 4 ((𝑊 ∈ LMod ∧ ( I ↾ 𝐹) LIndF 𝑊) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
117, 9, 10syl2anc 579 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
12 resabs1 5676 . . . . 5 (𝐺𝐹 → (( I ↾ 𝐹) ↾ 𝐺) = ( I ↾ 𝐺))
1312breq1d 4896 . . . 4 (𝐺𝐹 → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
14133ad2ant3 1126 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
1511, 14mpbid 224 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐺) LIndF 𝑊)
161islinds 20552 . . 3 (𝑊 ∈ LMod → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
17163ad2ant1 1124 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
186, 15, 17mpbir2and 703 1 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071  wcel 2107  wss 3792   class class class wbr 4886   I cid 5260  cres 5357  cfv 6135  Basecbs 16255  LModclmod 19255   LIndF clindf 20547  LIndSclinds 20548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-slot 16259  df-base 16261  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-lmod 19257  df-lss 19325  df-lsp 19367  df-lindf 20549  df-linds 20550
This theorem is referenced by:  islinds4  20578  dimkerim  30441
  Copyright terms: Public domain W3C validator