MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsss Structured version   Visualization version   GIF version

Theorem lindsss 21754
Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
lindsss ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))

Proof of Theorem lindsss
StepHypRef Expression
1 eqid 2730 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
21linds1 21740 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
32adantl 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → 𝐹 ⊆ (Base‘𝑊))
4 sstr2 3939 . . . 4 (𝐺𝐹 → (𝐹 ⊆ (Base‘𝑊) → 𝐺 ⊆ (Base‘𝑊)))
53, 4syl5com 31 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → (𝐺𝐹𝐺 ⊆ (Base‘𝑊)))
653impia 1117 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ⊆ (Base‘𝑊))
7 simp1 1136 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
8 linds2 21741 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊)
983ad2ant2 1134 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐹) LIndF 𝑊)
10 lindfres 21753 . . . 4 ((𝑊 ∈ LMod ∧ ( I ↾ 𝐹) LIndF 𝑊) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
117, 9, 10syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊)
12 resabs1 5952 . . . . 5 (𝐺𝐹 → (( I ↾ 𝐹) ↾ 𝐺) = ( I ↾ 𝐺))
1312breq1d 5099 . . . 4 (𝐺𝐹 → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
14133ad2ant3 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊))
1511, 14mpbid 232 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → ( I ↾ 𝐺) LIndF 𝑊)
161islinds 21739 . . 3 (𝑊 ∈ LMod → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
17163ad2ant1 1133 . 2 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊)))
186, 15, 17mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺𝐹) → 𝐺 ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2110  wss 3900   class class class wbr 5089   I cid 5508  cres 5616  cfv 6477  Basecbs 17112  LModclmod 20786   LIndF clindf 21734  LIndSclinds 21735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-1cn 11056  ax-addcl 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-nn 12118  df-slot 17085  df-ndx 17097  df-base 17113  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lindf 21736  df-linds 21737
This theorem is referenced by:  islinds4  21765  linds2eq  33336  dimkerim  33630
  Copyright terms: Public domain W3C validator