![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindsss | Structured version Visualization version GIF version |
Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindsss | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | 1 | linds1 20553 | . . . . 5 ⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊)) |
3 | 2 | adantl 475 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → 𝐹 ⊆ (Base‘𝑊)) |
4 | sstr2 3828 | . . . 4 ⊢ (𝐺 ⊆ 𝐹 → (𝐹 ⊆ (Base‘𝑊) → 𝐺 ⊆ (Base‘𝑊))) | |
5 | 3, 4 | syl5com 31 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → (𝐺 ⊆ 𝐹 → 𝐺 ⊆ (Base‘𝑊))) |
6 | 5 | 3impia 1106 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ⊆ (Base‘𝑊)) |
7 | simp1 1127 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝑊 ∈ LMod) | |
8 | linds2 20554 | . . . . 5 ⊢ (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊) | |
9 | 8 | 3ad2ant2 1125 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ( I ↾ 𝐹) LIndF 𝑊) |
10 | lindfres 20566 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ( I ↾ 𝐹) LIndF 𝑊) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊) | |
11 | 7, 9, 10 | syl2anc 579 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊) |
12 | resabs1 5676 | . . . . 5 ⊢ (𝐺 ⊆ 𝐹 → (( I ↾ 𝐹) ↾ 𝐺) = ( I ↾ 𝐺)) | |
13 | 12 | breq1d 4896 | . . . 4 ⊢ (𝐺 ⊆ 𝐹 → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊)) |
14 | 13 | 3ad2ant3 1126 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊)) |
15 | 11, 14 | mpbid 224 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ( I ↾ 𝐺) LIndF 𝑊) |
16 | 1 | islinds 20552 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊))) |
17 | 16 | 3ad2ant1 1124 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊))) |
18 | 6, 15, 17 | mpbir2and 703 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 ∈ wcel 2107 ⊆ wss 3792 class class class wbr 4886 I cid 5260 ↾ cres 5357 ‘cfv 6135 Basecbs 16255 LModclmod 19255 LIndF clindf 20547 LIndSclinds 20548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-slot 16259 df-base 16261 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-lmod 19257 df-lss 19325 df-lsp 19367 df-lindf 20549 df-linds 20550 |
This theorem is referenced by: islinds4 20578 dimkerim 30441 |
Copyright terms: Public domain | W3C validator |