| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lindsss | Structured version Visualization version GIF version | ||
| Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lindsss | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | 1 | linds1 21830 | . . . . 5 ⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊)) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → 𝐹 ⊆ (Base‘𝑊)) |
| 4 | sstr2 3990 | . . . 4 ⊢ (𝐺 ⊆ 𝐹 → (𝐹 ⊆ (Base‘𝑊) → 𝐺 ⊆ (Base‘𝑊))) | |
| 5 | 3, 4 | syl5com 31 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → (𝐺 ⊆ 𝐹 → 𝐺 ⊆ (Base‘𝑊))) |
| 6 | 5 | 3impia 1118 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ⊆ (Base‘𝑊)) |
| 7 | simp1 1137 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝑊 ∈ LMod) | |
| 8 | linds2 21831 | . . . . 5 ⊢ (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊) | |
| 9 | 8 | 3ad2ant2 1135 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ( I ↾ 𝐹) LIndF 𝑊) |
| 10 | lindfres 21843 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ( I ↾ 𝐹) LIndF 𝑊) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊) | |
| 11 | 7, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊) |
| 12 | resabs1 6024 | . . . . 5 ⊢ (𝐺 ⊆ 𝐹 → (( I ↾ 𝐹) ↾ 𝐺) = ( I ↾ 𝐺)) | |
| 13 | 12 | breq1d 5153 | . . . 4 ⊢ (𝐺 ⊆ 𝐹 → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊)) |
| 14 | 13 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊)) |
| 15 | 11, 14 | mpbid 232 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ( I ↾ 𝐺) LIndF 𝑊) |
| 16 | 1 | islinds 21829 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊))) |
| 17 | 16 | 3ad2ant1 1134 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊))) |
| 18 | 6, 15, 17 | mpbir2and 713 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ⊆ wss 3951 class class class wbr 5143 I cid 5577 ↾ cres 5687 ‘cfv 6561 Basecbs 17247 LModclmod 20858 LIndF clindf 21824 LIndSclinds 21825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-slot 17219 df-ndx 17231 df-base 17248 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lindf 21826 df-linds 21827 |
| This theorem is referenced by: islinds4 21855 linds2eq 33409 dimkerim 33678 |
| Copyright terms: Public domain | W3C validator |