![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindsss | Structured version Visualization version GIF version |
Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindsss | β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β πΊ β (LIndSβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . . . 6 β’ (Baseβπ) = (Baseβπ) | |
2 | 1 | linds1 21365 | . . . . 5 β’ (πΉ β (LIndSβπ) β πΉ β (Baseβπ)) |
3 | 2 | adantl 483 | . . . 4 β’ ((π β LMod β§ πΉ β (LIndSβπ)) β πΉ β (Baseβπ)) |
4 | sstr2 3990 | . . . 4 β’ (πΊ β πΉ β (πΉ β (Baseβπ) β πΊ β (Baseβπ))) | |
5 | 3, 4 | syl5com 31 | . . 3 β’ ((π β LMod β§ πΉ β (LIndSβπ)) β (πΊ β πΉ β πΊ β (Baseβπ))) |
6 | 5 | 3impia 1118 | . 2 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β πΊ β (Baseβπ)) |
7 | simp1 1137 | . . . 4 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β π β LMod) | |
8 | linds2 21366 | . . . . 5 β’ (πΉ β (LIndSβπ) β ( I βΎ πΉ) LIndF π) | |
9 | 8 | 3ad2ant2 1135 | . . . 4 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β ( I βΎ πΉ) LIndF π) |
10 | lindfres 21378 | . . . 4 β’ ((π β LMod β§ ( I βΎ πΉ) LIndF π) β (( I βΎ πΉ) βΎ πΊ) LIndF π) | |
11 | 7, 9, 10 | syl2anc 585 | . . 3 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β (( I βΎ πΉ) βΎ πΊ) LIndF π) |
12 | resabs1 6012 | . . . . 5 β’ (πΊ β πΉ β (( I βΎ πΉ) βΎ πΊ) = ( I βΎ πΊ)) | |
13 | 12 | breq1d 5159 | . . . 4 β’ (πΊ β πΉ β ((( I βΎ πΉ) βΎ πΊ) LIndF π β ( I βΎ πΊ) LIndF π)) |
14 | 13 | 3ad2ant3 1136 | . . 3 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β ((( I βΎ πΉ) βΎ πΊ) LIndF π β ( I βΎ πΊ) LIndF π)) |
15 | 11, 14 | mpbid 231 | . 2 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β ( I βΎ πΊ) LIndF π) |
16 | 1 | islinds 21364 | . . 3 β’ (π β LMod β (πΊ β (LIndSβπ) β (πΊ β (Baseβπ) β§ ( I βΎ πΊ) LIndF π))) |
17 | 16 | 3ad2ant1 1134 | . 2 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β (πΊ β (LIndSβπ) β (πΊ β (Baseβπ) β§ ( I βΎ πΊ) LIndF π))) |
18 | 6, 15, 17 | mpbir2and 712 | 1 β’ ((π β LMod β§ πΉ β (LIndSβπ) β§ πΊ β πΉ) β πΊ β (LIndSβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 β wcel 2107 β wss 3949 class class class wbr 5149 I cid 5574 βΎ cres 5679 βcfv 6544 Basecbs 17144 LModclmod 20471 LIndF clindf 21359 LIndSclinds 21360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-nn 12213 df-slot 17115 df-ndx 17127 df-base 17145 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-lmod 20473 df-lss 20543 df-lsp 20583 df-lindf 21361 df-linds 21362 |
This theorem is referenced by: islinds4 21390 linds2eq 32497 dimkerim 32712 |
Copyright terms: Public domain | W3C validator |