| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lindsss | Structured version Visualization version GIF version | ||
| Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| lindsss | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | 1 | linds1 21740 | . . . . 5 ⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊)) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → 𝐹 ⊆ (Base‘𝑊)) |
| 4 | sstr2 3939 | . . . 4 ⊢ (𝐺 ⊆ 𝐹 → (𝐹 ⊆ (Base‘𝑊) → 𝐺 ⊆ (Base‘𝑊))) | |
| 5 | 3, 4 | syl5com 31 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊)) → (𝐺 ⊆ 𝐹 → 𝐺 ⊆ (Base‘𝑊))) |
| 6 | 5 | 3impia 1117 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ⊆ (Base‘𝑊)) |
| 7 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝑊 ∈ LMod) | |
| 8 | linds2 21741 | . . . . 5 ⊢ (𝐹 ∈ (LIndS‘𝑊) → ( I ↾ 𝐹) LIndF 𝑊) | |
| 9 | 8 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ( I ↾ 𝐹) LIndF 𝑊) |
| 10 | lindfres 21753 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ( I ↾ 𝐹) LIndF 𝑊) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊) | |
| 11 | 7, 9, 10 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → (( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊) |
| 12 | resabs1 5952 | . . . . 5 ⊢ (𝐺 ⊆ 𝐹 → (( I ↾ 𝐹) ↾ 𝐺) = ( I ↾ 𝐺)) | |
| 13 | 12 | breq1d 5099 | . . . 4 ⊢ (𝐺 ⊆ 𝐹 → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊)) |
| 14 | 13 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ((( I ↾ 𝐹) ↾ 𝐺) LIndF 𝑊 ↔ ( I ↾ 𝐺) LIndF 𝑊)) |
| 15 | 11, 14 | mpbid 232 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → ( I ↾ 𝐺) LIndF 𝑊) |
| 16 | 1 | islinds 21739 | . . 3 ⊢ (𝑊 ∈ LMod → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊))) |
| 17 | 16 | 3ad2ant1 1133 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → (𝐺 ∈ (LIndS‘𝑊) ↔ (𝐺 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐺) LIndF 𝑊))) |
| 18 | 6, 15, 17 | mpbir2and 713 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝐺 ⊆ 𝐹) → 𝐺 ∈ (LIndS‘𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2110 ⊆ wss 3900 class class class wbr 5089 I cid 5508 ↾ cres 5616 ‘cfv 6477 Basecbs 17112 LModclmod 20786 LIndF clindf 21734 LIndSclinds 21735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-1cn 11056 ax-addcl 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12118 df-slot 17085 df-ndx 17097 df-base 17113 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lindf 21736 df-linds 21737 |
| This theorem is referenced by: islinds4 21765 linds2eq 33336 dimkerim 33630 |
| Copyright terms: Public domain | W3C validator |